近年来, 深度强化学习(deep reinforcement learning, DRL)已经在诸多序贯决策任务中取得瞩目成功, 但当前, 深度强化学习的成功很大程度依赖于海量的学习数据与计算资源, 低劣的样本效率和策略通用性是制约其进一步发展的关键因素. 元强化学习(meta-reinforcement learning, Meta-RL)致力于以更小的样本量适应更广泛的任务, 其研究有望缓解上述限制从而推进强化学习领域发展. 以元强化学习工作的研究对象与适用场景为脉络, 对元强化学习领域的研究进展进行了全面梳理: 首先, 对深度强化学习、元学习背景做基本介绍; 然后, 对元强化学习作形式化定义及常见的场景设置总结, 并从元强化学习研究成果的适用范围角度展开介绍元强化学习的现有研究进展; 最后, 分析了元强化学习领域的研究挑战与发展前景.

成为VIP会员查看完整内容
35

相关内容

Meta RL(Meta Reinforcement Learning)是Meta Learning应用到Reinforcement Learning的一个研究方向,核心的想法就是希望AI在学习大量的RL任务中获取足够的先验知识Prior Knowledge然后在面对新的RL任务时能够 学的更快,学的更好,能够自适应新环境!
逆强化学习算法、理论与应用研究综述
专知会员服务
61+阅读 · 2023年8月2日
面向深度强化学习的对抗攻防综述
专知会员服务
62+阅读 · 2023年8月2日
基于课程学习的深度强化学习研究综述
专知会员服务
57+阅读 · 2022年11月28日
基于通信的多智能体强化学习进展综述
专知会员服务
108+阅读 · 2022年11月12日
结合进化算法的深度强化学习方法研究综述
专知会员服务
78+阅读 · 2022年7月16日
联邦学习攻防研究综述
专知会员服务
56+阅读 · 2022年7月15日
知识图谱推理研究综述
专知会员服务
189+阅读 · 2022年6月14日
个性化学习推荐研究综述
专知会员服务
58+阅读 · 2022年2月2日
专知会员服务
51+阅读 · 2021年4月6日
专知会员服务
110+阅读 · 2021年1月1日
「基于通信的多智能体强化学习」 进展综述
基于模型的强化学习综述
专知
33+阅读 · 2022年7月13日
联邦学习研究综述
专知
11+阅读 · 2021年12月25日
时空序列预测方法综述
专知
21+阅读 · 2020年10月19日
联邦学习安全与隐私保护研究综述
专知
12+阅读 · 2020年8月7日
最新《多任务学习》综述,39页pdf
专知
28+阅读 · 2020年7月10日
层级强化学习概念简介
CreateAMind
17+阅读 · 2019年6月9日
基于逆强化学习的示教学习方法综述
计算机研究与发展
15+阅读 · 2019年2月25日
深度强化学习简介
专知
30+阅读 · 2018年12月3日
机器学习必备手册
机器学习研究会
19+阅读 · 2017年10月24日
国家自然科学基金
41+阅读 · 2015年12月31日
国家自然科学基金
15+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
15+阅读 · 2013年12月31日
Arxiv
158+阅读 · 2023年4月20日
A Survey of Large Language Models
Arxiv
408+阅读 · 2023年3月31日
Arxiv
68+阅读 · 2023年3月26日
Arxiv
147+阅读 · 2023年3月24日
Arxiv
21+阅读 · 2023年3月17日
VIP会员
相关VIP内容
逆强化学习算法、理论与应用研究综述
专知会员服务
61+阅读 · 2023年8月2日
面向深度强化学习的对抗攻防综述
专知会员服务
62+阅读 · 2023年8月2日
基于课程学习的深度强化学习研究综述
专知会员服务
57+阅读 · 2022年11月28日
基于通信的多智能体强化学习进展综述
专知会员服务
108+阅读 · 2022年11月12日
结合进化算法的深度强化学习方法研究综述
专知会员服务
78+阅读 · 2022年7月16日
联邦学习攻防研究综述
专知会员服务
56+阅读 · 2022年7月15日
知识图谱推理研究综述
专知会员服务
189+阅读 · 2022年6月14日
个性化学习推荐研究综述
专知会员服务
58+阅读 · 2022年2月2日
专知会员服务
51+阅读 · 2021年4月6日
专知会员服务
110+阅读 · 2021年1月1日
相关资讯
「基于通信的多智能体强化学习」 进展综述
基于模型的强化学习综述
专知
33+阅读 · 2022年7月13日
联邦学习研究综述
专知
11+阅读 · 2021年12月25日
时空序列预测方法综述
专知
21+阅读 · 2020年10月19日
联邦学习安全与隐私保护研究综述
专知
12+阅读 · 2020年8月7日
最新《多任务学习》综述,39页pdf
专知
28+阅读 · 2020年7月10日
层级强化学习概念简介
CreateAMind
17+阅读 · 2019年6月9日
基于逆强化学习的示教学习方法综述
计算机研究与发展
15+阅读 · 2019年2月25日
深度强化学习简介
专知
30+阅读 · 2018年12月3日
机器学习必备手册
机器学习研究会
19+阅读 · 2017年10月24日
相关基金
国家自然科学基金
41+阅读 · 2015年12月31日
国家自然科学基金
15+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
15+阅读 · 2013年12月31日
微信扫码咨询专知VIP会员