深度强化学习是目前机器学习领域中重要的研究分支之一,它可以通过直接与环境进行交互实现端到端的学习,对高维度和大规模的问题有着很好的解决能力.虽然深度强化学习已经取得了瞩目的成果,但其仍面临着对环境探索能力不足、鲁棒性差、容易受到由欺骗性奖励导致的欺骗性梯度影响等问题.进化算法普遍具有较好的 全局搜索能力、良好的鲁棒性和并行性等优点,因此将进化算法与深度强化学习结合用于弥补深度强化学习不足 的方法成为了当前研究的热点.该文主要关注进化算法在无模型的深度强化学习方法中的应用,首先简单介绍了 进化算法和强化学习基本方法,之后详细阐述了两类结合进化算法的强化学习方法,分别是进化算法引导策略搜 索的强化学习和结合进化算法的深度强化学习,同时对这些方法进行了对比与分析,最后对该领域的研究重点和 发展趋势进行了探究. 长期以来,强化学习都是机器学习方法中不可 或缺的一部分,在国际上也一直是机器学习领域中 炙手可热的研究分支.在强化学习中,智能体首先根 据环境状态进行决策从而产生动作,之后通过产生 的动作与环境进行交互获得强化信号,调整产生决 策的函数映射,使得智能体能够选择获得环境最大 奖励的决策方案.智能体经过长期与环境的交互,不 断向累积回报最大的方向优化策略,最终使累积回 报尽可能地最大化.2013年,DeepMind团队的 Mnih 等人首先将 传统强化学习中的Q-Learning算法[1]与深度神经网 络相结合,并提出了深度Q 网络(Deep Q-Network, DQN)算法[23],使用 DQN 算法训练的智能体在Atari游戏中取得了超过人类得分的惊人表现.这一成 果开拓了深度强化学习这一新的方向,并成为了当今人工智能领 域新的研究热点.深度强化学习是一种端到端的学习方法,它不需要标记的数据作为输入,而是通过与环境进行交互获取原始输入信息,从而学习动作策略,通过不断的试错形成具有强大学习能力的智能体[4].2016年,DeepMind团队使用深度强化学习训练的AlphaGo智能体[5]击败了人类最顶尖的围棋 选手,是机器学习领域的重大标志性事件,使得深度强化学习成为研究者们关注的焦点.目前深度强化 学习在机器博弈[57]、机器人控制[8]、自然语言处理[9]、最优控制[10]和计算机视觉[1]等领域中取得了广泛的应用,被认为是通向通用人工智能的重要方 法之一[12].