高维黑盒优化仍然是一个重要但却极富挑战性的问题。尽管贝叶斯优化方法在连续域上取得了成功,但对于分类域,或者混合了连续变量和分类变量的域,仍然具有挑战性。我们提出了一种新的解决方案——我们将局部优化与定制的内核设计相结合,有效地处理高维分类和混合搜索空间,同时保持样本效率。我们进一步推导了该方法的收敛性保证。最后,我们通过经验证明,我们的方法在性能、计算成本或两者方面都优于当前的各种合成和现实任务基准。

https://www.zhuanzhi.ai/paper/caddcda9300c2842d75559e1b57a8304

成为VIP会员查看完整内容
27

相关内容

专知会员服务
24+阅读 · 2021年6月15日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
21+阅读 · 2021年5月27日
专知会员服务
32+阅读 · 2021年5月18日
专知会员服务
81+阅读 · 2021年5月10日
专知会员服务
62+阅读 · 2021年3月12日
【WWW2021】少样本图学习分子性质预测
专知会员服务
35+阅读 · 2021年2月20日
【ICML2020】通过神经引导的A*搜索学习逆合成设计
专知会员服务
16+阅读 · 2020年8月18日
【ICML 2020 】小样本学习即领域迁移
专知
5+阅读 · 2020年6月26日
【泡泡图灵智库】HSfM: 混合运动恢复结构(CVPR)
泡泡机器人SLAM
10+阅读 · 2018年12月13日
【混合智能】人机混合智能的哲学思考
产业智能官
12+阅读 · 2018年10月28日
基于二进制哈希编码快速学习的快速图像检索
炼数成金订阅号
8+阅读 · 2018年5月17日
Learning quantum circuits of some $T$ gates
Arxiv
0+阅读 · 2021年6月23日
Quantum Computing -- from NISQ to PISQ
Arxiv
0+阅读 · 2021年6月22日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
8+阅读 · 2019年2月15日
Learning From Positive and Unlabeled Data: A Survey
Arxiv
5+阅读 · 2018年11月12日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关VIP内容
专知会员服务
24+阅读 · 2021年6月15日
【ICML2021】学习分子构象生成的梯度场
专知会员服务
14+阅读 · 2021年5月30日
专知会员服务
21+阅读 · 2021年5月27日
专知会员服务
32+阅读 · 2021年5月18日
专知会员服务
81+阅读 · 2021年5月10日
专知会员服务
62+阅读 · 2021年3月12日
【WWW2021】少样本图学习分子性质预测
专知会员服务
35+阅读 · 2021年2月20日
【ICML2020】通过神经引导的A*搜索学习逆合成设计
专知会员服务
16+阅读 · 2020年8月18日
相关论文
Learning quantum circuits of some $T$ gates
Arxiv
0+阅读 · 2021年6月23日
Quantum Computing -- from NISQ to PISQ
Arxiv
0+阅读 · 2021年6月22日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
8+阅读 · 2019年2月15日
Learning From Positive and Unlabeled Data: A Survey
Arxiv
5+阅读 · 2018年11月12日
Arxiv
4+阅读 · 2018年4月30日
微信扫码咨询专知VIP会员