高维黑盒优化仍然是一个重要但却极富挑战性的问题。尽管贝叶斯优化方法在连续域上取得了成功,但对于分类域,或者混合了连续变量和分类变量的域,仍然具有挑战性。我们提出了一种新的解决方案——我们将局部优化与定制的内核设计相结合,有效地处理高维分类和混合搜索空间,同时保持样本效率。我们进一步推导了该方法的收敛性保证。最后,我们通过经验证明,我们的方法在性能、计算成本或两者方面都优于当前的各种合成和现实任务基准。
https://www.zhuanzhi.ai/paper/caddcda9300c2842d75559e1b57a8304