【ICML 2020 】小样本学习即领域迁移

2020 年 6 月 26 日 专知


论文地址: https://arxiv.org/pdf/2002.02050.pdf
代码地址: https://github.com/JiechaoGuan/FSL-DAPNA

为了利用少量标注样本实现对未见类图片的识别,小样本学习希望从可见类图片中学习先验知识。小样本学习的难点是未见类别的数据分布与可见类别的不同,从而导致在可见类上训练好的模型无法较好地迁移到未见类别领域。这种由于类别不同导致的数据分布差异可以看作是一种特殊的领域迁移问题。
在这篇论文中,我们提出了一种基于注意力机制的领域迁移原型网络 (DAPNA),去解决在元学习框架下的领域迁移问题。具体来说是在训练过程中,我们将可见类的一个纪元 (episode,训练单位)分拆成两个类别完全不重合的子纪元(sub-episode),用以模拟从可见类到未见类的领域迁移。在假定所有纪元都采样于同一个分布的情况下,我们在理论上给出了该模型的期望损失上界,我们也根据该期望损失上界进行损失函数的设计与模型的优化。诸多实验表明,我们所提出的DAPNA模型能比已有小样本学习模型取得更好的效果。
模型主要由两大子模块构成:小样本学习模块和领域迁移模块。流程图中的AutoEncoder是两个简单的线性层,为了让图片特征的领域归属更模糊,在这里不做详细介绍。


专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“FSDA” 可以获取《ICML2020小样本学习即领域迁移》专知下载链接索引

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“阅读原文”,了解使用专知,查看获取5000+AI主题知识资源
登录查看更多
5

相关内容

注意力图神经网络的小样本学习
专知会员服务
192+阅读 · 2020年7月16日
专知会员服务
51+阅读 · 2020年7月16日
【CVPR2020-北京大学】自适应间隔损失的提升小样本学习
专知会员服务
85+阅读 · 2020年6月9日
基于深度神经网络的少样本学习综述
专知会员服务
172+阅读 · 2020年4月22日
【CVPR2020-旷视】DPGN:分布传播图网络的小样本学习
专知会员服务
27+阅读 · 2020年4月1日
ICCV2019|基于全局类别表征的小样本学习
极市平台
11+阅读 · 2019年9月21日
Arxiv
5+阅读 · 2020年3月17日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Meta-Learning with Latent Embedding Optimization
Arxiv
6+阅读 · 2018年7月16日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
11+阅读 · 2018年4月25日
Arxiv
4+阅读 · 2017年10月30日
VIP会员
相关VIP内容
注意力图神经网络的小样本学习
专知会员服务
192+阅读 · 2020年7月16日
专知会员服务
51+阅读 · 2020年7月16日
【CVPR2020-北京大学】自适应间隔损失的提升小样本学习
专知会员服务
85+阅读 · 2020年6月9日
基于深度神经网络的少样本学习综述
专知会员服务
172+阅读 · 2020年4月22日
【CVPR2020-旷视】DPGN:分布传播图网络的小样本学习
专知会员服务
27+阅读 · 2020年4月1日
相关论文
Arxiv
5+阅读 · 2020年3月17日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
Meta-Transfer Learning for Few-Shot Learning
Arxiv
8+阅读 · 2018年12月6日
Meta-Learning with Latent Embedding Optimization
Arxiv
6+阅读 · 2018年7月16日
Arxiv
11+阅读 · 2018年7月8日
Arxiv
11+阅读 · 2018年4月25日
Arxiv
4+阅读 · 2017年10月30日
Top
微信扫码咨询专知VIP会员