城市大数据为城市运行状态估计与综合决策提供理论与行动支撑,而其多源异构、耦合度低及动态变化等特点给传统的集成分析带来极大挑战。认知计算适用于时变多维、复杂多样数据的分析与挖掘,并可对问题进行自适应学习与进化,是解决城市大数据问题的重要途径。文中以城市大数据为背景,根据城市大数据的不同类型结构等特点,针对性地按照认知流程的4个环节对相应处理方法进行归纳,并进一步从知识驱动、数据驱动以及知识与数据协同驱动的角度,对上述具体方法进行概念级分类。最终形成城市大数据认知流程中不同驱动方式的方法间有机协同,从感知理解到决策行为的城市大数据认知闭环。同时从应用领域多角度综述了城市大数据认知计算的研究与发展现状。最后讨论了认知计算在城市大数据建设领域面临的挑战,并对未来发展趋势和研究方向进行了思考和展望。