最近,在EPFL的机器学习夏令营上,图灵奖得主Yann LeCun最新报告《从机器学习到自主智能》,详细阐述了最近关于自主智能的具体概念,非常值得关注!

随着机器学习的不断发展,领域内的研究者开始思考一个问题:我们离通用人工智能(AGI)还有多远? 要实现 AGI,最关键的一点是让机器了解世界是如何运转的,掌握广泛的现实知识。 这也是图灵奖得主 LeCun 近期在探索的问题。他曾表示:让机器像人或动物一样行动一直是他一生的追求。 LeCun 认为动物大脑的运行可以看作是对现实世界的模拟,他称之为世界模型。LeCun 表示,婴儿在出生后的头几个月通过观察世界来学习基础知识。观察一个小球掉几百次,普通婴儿就算不了解物理,也会对重力的存在与运作有基础认知。 不久之前,LeCun 表示他已经建立了世界模型的早期版本,可以进行基本的物体识别,他现在正致力于训练它做出预测。在昨天公布的一篇论文中,LeCun 详细地描述了这一愿景。

AI / ML / DL在当今的应用

很大程度上依赖于监督式深度学习。在Deep RL上有一些。 * 越来越依赖训练前的自监督学习

与人类和动物相比,现在的ML/DL很糟糕

人类和动物学习世界的模型

Self-Supervised学习

主要问题:表示不确定性,学习抽象。

基于能量的模型

对比学习方法样本 * Non-contrastive学习方法

深度SSL是下一场AI革命的促成因素

我会试着说服你:

放弃监督和强化学习

嗯,不完全是,但是尽可能多。

放弃概率模型

使用基于能量的框架来代替 放弃生成模型 使用联合嵌入架构代替 使用分层的基于潜在变量的能量模型 使机器能够推理和计划。 参见论文稿:“通向自主机器智能的道路” https://openreview.net/forum?id=BZ5a1r-kVsf

成为VIP会员查看完整内容
65

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
自主机器智能!图灵奖得主Yann LeCun指明下一代AI方向
专知会员服务
53+阅读 · 2022年6月29日
Yoshua Bengio最新《深度学习》MLSS2020教程,附104页PPT及视频
专知会员服务
130+阅读 · 2020年7月10日
最新!Yann Lecun 纽约大学Spring2020深度学习课程,附PPT下载
LeCun领导下的Meta AI,押注自监督
机器之心
0+阅读 · 2022年7月6日
【干货】Yann Lecun自监督学习指南(附114页Slides全文)
GAN生成式对抗网络
93+阅读 · 2018年12月19日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
18+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月29日
Arxiv
0+阅读 · 2022年9月28日
Arxiv
0+阅读 · 2022年9月27日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
18+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员