Python算法,第二版解释了Python算法分析和设计的方法。作者Magnus Lie Hetland,开始Python的作者,这本书尖锐地关注经典算法,但它也提供了一个坚实的理解基本算法解决问题的技术。

这本书以高度可读的方式处理编程和计算机科学的一些最重要和具有挑战性的领域。它涵盖了算法理论和编程实践,展示了理论是如何在真实的Python程序中反映出来的。介绍了Python语言中内置的知名算法和数据结构,并向用户展示了如何实现和评估其他算法和数据结构。

https://www.apress.com/gp/book/9781484200568

成为VIP会员查看完整内容
0
61

相关内容

这本书是为任何想学习如何开发机器学习系统的人准备的。我们将从理论和实践两方面涵盖关于机器学习算法的最重要概念,并将使用Python编程语言中的Scikit-learn库实现许多机器学习算法。在第一章中,您将学习机器学习最重要的概念,在下一章中,您将主要学习分类。在最后一章中,你将学习如何训练你的模型。我假定你已经了解了编程的基础知识。

成为VIP会员查看完整内容
0
115

学习使用Python分析数据和预测结果的更简单和更有效的方法

Python机器学习教程展示了通过关注两个核心机器学习算法家族来成功分析数据,本书能够提供工作机制的完整描述,以及使用特定的、可破解的代码来说明机制的示例。算法用简单的术语解释,没有复杂的数学,并使用Python应用,指导算法选择,数据准备,并在实践中使用训练过的模型。您将学习一套核心的Python编程技术,各种构建预测模型的方法,以及如何测量每个模型的性能,以确保使用正确的模型。关于线性回归和集成方法的章节深入研究了每种算法,你可以使用书中的示例代码来开发你自己的数据分析解决方案。

机器学习算法是数据分析和可视化的核心。在过去,这些方法需要深厚的数学和统计学背景,通常需要结合专门的R编程语言。这本书演示了机器学习可以如何实现使用更广泛的使用和可访问的Python编程语言。

使用线性和集成算法族预测结果

建立可以解决一系列简单和复杂问题的预测模型

使用Python应用核心机器学习算法

直接使用示例代码构建自定义解决方案

机器学习不需要复杂和高度专业化。Python使用了更简单、有效和经过良好测试的方法,使这项技术更容易为更广泛的受众所接受。Python中的机器学习将向您展示如何做到这一点,而不需要广泛的数学或统计背景。

成为VIP会员查看完整内容
0
147

这本书的前半部分快速而彻底地概述了Python的所有基础知识。你不需要任何以前的经验与编程开始,我们将教你一切你需要知道,一步一步。

第二部分着重于用Python以实用的方式解决有趣的、真实的问题。一旦你掌握了基础知识,你就会通过跟随我们的动手编程练习和项目迅速提高。

我们在书中的每一页都精心安排了漂亮的排版,代码示例的语法高亮显示,以及教学截图,这样你可以有效地处理和记忆信息:

所有材料都是Python 3.9的最新版本,Python编程语言在2020年发布的最新和最好的版本。简而言之,以下是你将学到的Python基础知识:Python 3的实用介绍:

安装和运行Python:在Windows、macOS或Linux上设置Python 3.9编码环境

  • 核心Python 3概念和约定:解释器会话、脚本、查找和修复代码bug、如何组织代码和构造Python程序、如何有效地学习和实践

  • Python 3.9基本原理:变量、基本数据类型、函数和循环、条件逻辑和控制流、字符串格式、列表/元组/字典、文件输入和输出、错误处理。

  • 中级Python概念:面向对象编程(OOP)、正则表达式、名称空间和作用域、异常处理、安装第三方包。

  • Python的实际使用:创建和修改PDF文件、使用数据库、从web下载和抓取内容、数据科学基础(科学计算和绘图)、图形用户界面和GUI编程。

成为VIP会员查看完整内容
0
72

Java—从第一步到第一个应用程序

了解Java是任何程序员必须具备的编程技能。它被广泛应用于各种编程项目中——从企业应用和移动应用到大数据、科学和金融应用。根据开发人员的数量、编写的代码行数和实际使用情况,该语言在最流行的语言调查中经常排名第一。它也是美国大学预修计算机科学课程的首选语言

本指南提供了一个易于遵循的路径,从理解编写Java代码的基础知识到将这些技能应用到实际项目中。这本书分为八本涵盖Java核心方面的迷你书,介绍了Java语言和面向对象编程的基础知识,然后开始构建web应用程序和数据库。

  • 了解Java基础知识
  • 探索面向对象编程
  • 学习字符串、数组和集合
  • 了解文件和数据库

一步一步的指导,以确保您不会迷失在任何一点的过程中。

成为VIP会员查看完整内容
0
38

如果您是用Python编程的新手,并且正在寻找可靠的介绍,那么这本书就是为您准备的。由计算机科学教师开发,在“为绝对初学者”系列丛书通过简单的游戏创造教授编程的原则。您将获得实际的Python编程应用程序所需的技能,并将了解如何在真实场景中使用这些技能。在整个章节中,你会发现一些代码示例来说明所提出的概念。在每一章的结尾,你会发现一个完整的游戏,展示了这一章的关键思想,一章的总结,以及一系列的挑战来测试你的新知识。当你读完这本书的时候,你将非常精通Python,并且能够将你所学到的基本编程原理应用到你要处理的下一种编程语言。

成为VIP会员查看完整内容
0
142

管理统计和数据科学的原理包括:数据可视化;描述性措施;概率;概率分布;数学期望;置信区间;和假设检验。方差分析;简单线性回归;多元线性回归也包括在内。另外,本书还提供了列联表、卡方检验、非参数方法和时间序列方法。

教材:

  • 包括通常在入门统计学课程中涵盖的学术材料,但与数据科学扭曲,较少强调理论
  • 依靠Minitab来展示如何用计算机执行任务
  • 展示并促进来自开放门户的数据的使用
  • 重点是发展对程序如何工作的直觉
  • 让读者了解大数据的潜力和目前使用它的失败之处
成为VIP会员查看完整内容
1
119

这本教科书通过提供实用的建议,使用直接的例子,并提供相关应用的引人入胜的讨论,以一种容易理解的方式介绍了基本的机器学习概念。主要的主题包括贝叶斯分类器,最近邻分类器,线性和多项式分类器,决策树,神经网络,和支持向量机。后面的章节展示了如何通过“推进”的方式结合这些简单的工具,如何在更复杂的领域中利用它们,以及如何处理各种高级的实际问题。有一章专门介绍流行的遗传算法。

这个修订的版本包含关于工业中机器学习的实用应用的关键主题的三个全新的章节。这些章节研究了多标签域,无监督学习和它在深度学习中的使用,以及归纳逻辑编程的逻辑方法。许多章节已经被扩展,并且材料的呈现已经被增强。这本书包含了许多新的练习,许多解决的例子,深入的实验,和独立工作的计算机作业。

https://link.springer.com/book/10.1007/978-3-319-63913-0#about

成为VIP会员查看完整内容
0
166

理解并实施panda的大数据分析解决方案,强调性能。本书通过探索其底层实现和数据结构,增强了您使用Python数据分析库pandas的直觉。

《Pandas 编程思想》介绍了大数据的主题,并通过观看pandas帮助解决的激动人心和有影响力的项目来展示概念。从那里,您将学习按大小和类型评估您自己的项目,以确定pandas是否适合您的需要。作者Hannah Stepanek解释了如何在pandas中有效地加载和规范化数据,并回顾了一些最常用的加载器和它们的几个最强大的选项。然后,您将了解如何有效地访问和转换数据,应该避免哪些方法,以及何时使用更高级的性能技术。您还将学习基本的数据访问、学习panda和直观的字典语法。此外,还讨论了如何选择正确的DataFrame格式、使用多层次的DataFrame以及将来如何改进panda。

在本书结束时,您将对pandas库的底层工作原理有一个牢固的理解。准备好用正确的方法在你自己的项目中做出自信的决定。

你将学到什么

  • 理解pandas的底层数据结构,以及为什么在某些情况下它会这样执行
  • 了解如何使用pandas正确地提取、转换和加载数据,重点关注性能
  • 选择正确的数据格式,使数据分析简单有效。
  • 使用其他Python库提高pandas操作的性能

这本书是给谁的

  • 具有基本Python编程技能的软件工程师热衷于在大数据分析项目中使用pandas。Python软件开发人员对大数据感兴趣。
成为VIP会员查看完整内容
0
108

本书涵盖了这些领域中使用Python模块演示的概率、统计和机器学习的关键思想。整本书包括所有的图形和数值结果,都可以使用Python代码及其相关的Jupyter/IPython Notebooks。作者通过使用多种分析方法和Python代码的有意义的示例,开发了机器学习中的关键直觉,从而将理论概念与具体实现联系起来。现代Python模块(如panda、y和Scikit-learn)用于模拟和可视化重要的机器学习概念,如偏差/方差权衡、交叉验证和正则化。许多抽象的数学思想,如概率论中的收敛性,都得到了发展,并用数值例子加以说明。本书适合任何具有概率、统计或机器学习的本科生,以及具有Python编程的基本知识的人。

成为VIP会员查看完整内容
0
177

Python算法,第二版解释了Python方法的算法分析和设计。本书由《初级Python》的作者Magnus Lie Hetland撰写,主要关注经典算法,但也对基本的算法解决问题技术有了深入的理解。

这本书涉及一些最重要和最具挑战性的领域的编程和计算机科学在一个高度可读的方式。它涵盖了算法理论和编程实践,演示了理论是如何反映在真实的Python程序中的。介绍了Python语言中内置的著名算法和数据结构,并向用户展示了如何实现和评估其他算法和数据结构

成为VIP会员查看完整内容
0
145
小贴士
相关主题
相关VIP内容
专知会员服务
147+阅读 · 2021年2月25日
专知会员服务
72+阅读 · 2020年10月11日
专知会员服务
142+阅读 · 2020年8月14日
专知会员服务
119+阅读 · 2020年7月29日
【干货书】《机器学习导论(第二版)》,348页pdf
专知会员服务
166+阅读 · 2020年6月16日
专知会员服务
177+阅读 · 2020年6月3日
相关资讯
421页《机器学习数学基础》最新2019版PDF下载
Python 如何快速入门?
全球人工智能
5+阅读 · 2018年3月15日
这几本Python新书特别赞
图灵教育
8+阅读 · 2018年3月1日
值得收藏的45个Python优质资源(附链接)
数据派THU
4+阅读 · 2018年2月10日
用于数学的 10 个优秀编程语言
算法与数据结构
6+阅读 · 2018年1月5日
Python 书单:从入门到……
Linux中国
16+阅读 · 2017年8月6日
相关论文
Junqiang Peng,Mingyu Xiao
0+阅读 · 2021年5月13日
Liangzhen Zheng,Haidong Lan,Tao Shen,Jiaxiang Wu,Sheng Wang,Wei Liu,Junzhou Huang
0+阅读 · 2021年5月10日
Jihong Zhu,David Navarro-Alarcon,Robin Passama,Andrea Cherubini
0+阅读 · 2021年5月4日
Morteza Ramezani,Anand Sivasubramaniam,Mahmut T. Kandemir
0+阅读 · 2021年4月11日
Commonsense Knowledge Base Completion with Structural and Semantic Context
Chaitanya Malaviya,Chandra Bhagavatula,Antoine Bosselut,Yejin Choi
17+阅读 · 2019年12月19日
Knowledge Based Machine Reading Comprehension
Yibo Sun,Daya Guo,Duyu Tang,Nan Duan,Zhao Yan,Xiaocheng Feng,Bing Qin
3+阅读 · 2018年9月12日
Minghao Hu,Yuxing Peng,Zhen Huang,Xipeng Qiu,Furu Wei,Ming Zhou
9+阅读 · 2018年4月25日
Farnoosh Ghadiri,Robert Bergevin,Guillaume-Alexandre Bilodeau
10+阅读 · 2018年1月10日
Top
微信扫码咨询专知VIP会员