选择要攻击的威胁是战场上最重要的决策之一。该决策问题表现为武器-目标分配问题(WTA)。在以往的研究中,动态编程、线性规划、元启发式和启发式方法已被用于解决这一问题。然而,以往的研究因建模过于简化、计算负担重、缺乏对干扰事件的适应性以及问题规模变化时的重新计算等问题而受到限制。为了克服这些局限性,本研究旨在利用强化学习和图神经网络来解决 WTA 问题。所提出的方法反映了现实世界的决策框架--OODA-loop(观察-定向-决策),具有很高的实用性。在各种环境中进行了实验,并通过与现有的启发式和元启发式方法进行比较,证明了所提方法的有效性。所提出的方法为战术指挥与控制中的智能决策引入了一种开创性的方法,传统上被认为是人类专家的专属方法。

本研究将强化学习与图形神经网络(GNN)相结合。强化学习与 GNN 的结合是最有前途的领域之一,因为 GNN 能有效地表示复杂的交互作用。为了应用强化学习,DWTA 被建模为 POMDP(部分可观测马尔可夫决策过程)。为了优化强化学习智能体的策略,采用了近端策略优化(PPO)。学习环境是一个仿真模型,反映了对真实世界的详细描述。本研究的贡献如下。

  • 本研究利用深度强化学习和图神经网络在各种情况下做出优化决策,为复杂性和不确定性主导的情况提供丰富的目标导向表征。

  • 图神经网络有助于提高我们方法的可扩展性,从而增强其实际用途。

  • 提出的方法通过人工智能技术的增强,为传统上由人类专家主导的领域(如战术指挥和控制)的决策制定带来了创新。

  • 从整数编程中定义的问题出发,利用马尔可夫状态的理论基础和图建模技术系统地构建了 POMDP。与依靠直觉和经验法则推导 POMDP 的传统方法相比,这是一种更有条理的方法,更容易看出 POMDP 与所定义问题之间的联系。

成为VIP会员查看完整内容
81

相关内容

人工智能在军事中可用于多项任务,例如目标识别、大数据处理、作战系统、网络安全、后勤运输、战争医疗、威胁和安全监测以及战斗模拟和训练。
《基于深度学习的多导弹规避态势感知技术》
专知会员服务
29+阅读 · 2024年11月20日
《军事危机模拟中语言模型自由决策不一致性度量》
专知会员服务
18+阅读 · 2024年10月29日
《考虑航向误差的武器目标分配问题研究》
专知会员服务
26+阅读 · 2024年10月12日
《无人机的人机协作:实验平台》
专知会员服务
71+阅读 · 2024年6月11日
《现代游戏和仿真的军事应用》
专知会员服务
61+阅读 · 2023年11月27日
《可信深度强化学习用于多效协同防御作战:综述》
专知会员服务
66+阅读 · 2023年6月19日
《多域作战环境下的军事决策过程》
专知
90+阅读 · 2023年4月12日
最新《图嵌入组合优化》综述论文,40页pdf
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
43+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
A Survey of Large Language Models
Arxiv
424+阅读 · 2023年3月31日
Arxiv
22+阅读 · 2023年3月17日
VIP会员
相关VIP内容
《基于深度学习的多导弹规避态势感知技术》
专知会员服务
29+阅读 · 2024年11月20日
《军事危机模拟中语言模型自由决策不一致性度量》
专知会员服务
18+阅读 · 2024年10月29日
《考虑航向误差的武器目标分配问题研究》
专知会员服务
26+阅读 · 2024年10月12日
《无人机的人机协作:实验平台》
专知会员服务
71+阅读 · 2024年6月11日
《现代游戏和仿真的军事应用》
专知会员服务
61+阅读 · 2023年11月27日
《可信深度强化学习用于多效协同防御作战:综述》
专知会员服务
66+阅读 · 2023年6月19日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
43+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
微信扫码咨询专知VIP会员