本文提出了一种用于未来预测的对抗性生成语法模型。目标是学习一个显性捕获时间依赖性的模型,提供预测多个不同的未来活动的能力。我们的对抗式语法的设计是为了使它可以从数据分布中学习随机产生规则,连同它的潜在的非终表示。在推理过程中能够选择多个生产规则,从而产生不同的预测结果,从而有效地建模许多可能的未来。对抗生成语法语法在Charades、MultiTHUMOS、human360万和50个沙拉数据集以及两个活动预测任务(未来3D人类姿态预测和未来活动预测)上进行评估。提出的对抗式语法比最先进的方法更好,能够比以前的工作更准确地预测未来。