NeurIPS 2022 | 商汤提出大批量训练算法,四分钟内训练目标检测器

2022 年 11 月 16 日 PaperWeekly


©作者 | 机器之心编辑部

来源 | 机器之心



来自商汤的基模型团队和香港大学等机构的研究人员提出了一种大批量训练算法  AGVM,该研究已被 NeurIPS 2022 接收。

本文提出了一种大批量训练算法 AGVM (Adaptive Gradient Variance Modulator),不仅可以适配于目标检测任务,同时也可以适配各类分割任务。AGVM 可以把目标检测的训练批量大小扩大到 1536,帮助研究人员四分钟训练 Faster R-CNN,3.5 小时把 COCO 刷到 62.2 mAP,均打破了目标检测训练速度的世界纪录。



论文题目:
Large-batch Optimization for Dense Visual Predictions

论文链接:

https://arxiv.org/pdf/2210.11078.pdf

代码链接:

https://github.com/Sense-X/AGVM


在当前的机器学习社区中,有三个普遍的趋势。首先,神经网络模型会越来越大。在 NLP 领域中最大规模的模型已经达到了上万亿级别。在视觉领域,最大规模的模型也达到了三百亿的量级。其次,训练的数据集也变得越来越大。比如,ImageNet 21k 和谷歌的 JFT 数据集都具有相当规模的数据集。另外,由于数据集变得越来越大,训练 SOTA 模型的开销越来越大。

因此,提升训练效率就变得愈发重要。而分布式训练因为其适应于数据并行、模型并行和流水线并行的加速训练方法的同时,也具备较高的 Deep Learning 通信效率而被广泛认为是一个有效的解决方案。

随着大模型时代的到来,目标检测器的训练速度越来越成为学术界和工业界的瓶颈,例如,在 COCO 的标准 setting 上把 mAP 训到 62 以上大概需要三天的时间,算上调试成本,这在业界几乎是不可接受的。那么,我们能不能把这个训练时间压到小时级别呢?

事实上,在图片分类和自然语言处理任务上,先前的研究人员借助 32K 的批量大小 (batch size),只需 14 分钟就可以完成 ImageNet 的训练,76 分钟完成 Bert 的训练。但是,在目标检测领域,还很欠缺这类研究,导致研究人员无法充分利用当前的算力,数据集和大模型。

大批量训练算法 AGVM 便是这个问题的最佳解决方案之一。为了支持如此大批量的训练,同时保持模型的训练精度,本研究提出了一套全新的训练算法,根据密集预测不同模块的梯度方差(gradient variance),动态调整每一个模块的学习率。作者在大量的密集预测网络和数据集上进行了实验,并且证实了该方法的合理性。



方法介绍
大批量训练是加速大型分布式系统中深度神经网络训练的关键。尤其是在如今的大模型时代,如果不采用大批量训练,一个网络的训练时间几乎是难以接受的。但是,大批量训练很难,因为它会产生泛化差距 (generalization gap), 直接训练会导致其准确率降低。

此前的大批量工作往往针对于图像分类以及一些自然语言处理的任务,但密集预测任务(包括检测分割等),同样在视觉中处于举足轻重的位置,此前的方法并不能在密集预测任务上有很好的表现,甚至结果比基准线更差,这导致我们难以快速训练一个目标检测器。
 
为了解决这个问题,研究人员进行了大量的实验。最后发现,相较于传统的分类网络,利用密集预测网络一个很重要的特征:密集预测网络往往是由多个组件组成的,以 Faster R-CNN 为例:它由四个部分组成,骨干网络 (Backbone),特征金字塔网络 (FPN),区域生成网络 (RPN) 和检测头网络 (head)。

我们可以发现一个很有效的指标:密集预测网络不同组件的梯度方差,在训练批量很小时(例如 32),几乎是相同的,但当训练批量很大时(例如 512),它们呈现出很大的区别,如下图所示:


那么,能不能直接把这些拉平呢?这直接引出了 AGVM 算法。以随机梯度下降算法为例,上角标 i 代表第 i 个网络模块(例如 FPN 等),上角标 1 代表骨干网络, 代表学习率,锚定骨干网络,可以直接将不同网络组件的梯度 g 的方差


梯度的方差 可以由以下式子估计:


方差的具体求解细节可以参考原文,本研究同样引入了滑动平均机制,防止网络训练发散。同时,研究证明了 AGVM 在非凸情况下的收敛性,讨论了动量以及衰减的处理方式,具体实现细节可以参考原文。
 


实验过程
本研究首先在目标检测、实例分割、全景分割和语义分割的各种密集预测网络上进行了测试,通过下表可以看到,当用标准批量大小训练时,AGVM 相较传统方法没有明显优势,但当在超大批量下训练时,AGVM 相较传统方法拥有压倒性的优势,下图第二列从左至右分别表示目标检测,实例分割,全景分割和语义分割的表现,AGVM 超越了有史以来的所有方法:

下表详细对比了 AGVM 和传统方法,体现出了本研究方法的优势:


同时,为了说明 AGVM 的优越性,本研究进行了以下三个超大规模的实验。研究人员把 Faster R-CNN 的 batch size 放到了 1536,这样利用 768 张 A100 可以在 4.2 分钟内完成训练。其次,借助 UniNet-G,本研究可以在利用 480 张 A100 的情况下,3.5 个小时让模型在 COCO 上达到 62.2mAP(不包括骨干网络预训练的时间),极大的减小了训练时间:


甚至,在 RetinaNet 上,本研究把批量大小扩展到 10K。这在目标检测领域是从未见的批量大小,在如此大的批量下,每一个 epoch 只有十几个迭代次数,AGVM 在如此大的批量下,仍然能展现出很强的稳定性,性能如下图所示:





结果分析

本研究探究了一个很重要的问题:以 RetinaNet 为例,如下图第一列所示,探究为什么会出现梯度方差不匹配这一现象。

本研究认为,这一现象来自于:网络不同模块间的有效批量大小 (effective batch size) 是不同的。例如,RetinaNet 的头网络的输入是由特征金字塔的五层网络输出的,特征金字塔的 top-down 和 bottom-up pathways,以及像素维度的损失函数计算会导致头网络和骨干网络的等效批量大小不同,这一原理导致了梯度方差不匹配的现象。

为了验证这一假设,本研究依次给每一层特征使用单独的头网络,移去特征金字塔网络,随机忽略掉 75% 的用于计算损失函数的像素,最终,本研究发现骨干网络和头网络的梯度方差曲线重合了,本研究也对 Faster R-CNN 做了类似的实验,如下图第二列所示,更多的讨论请参见原文。



更多阅读



#投 稿 通 道#

 让你的文字被更多人看到 



如何才能让更多的优质内容以更短路径到达读者群体,缩短读者寻找优质内容的成本呢?答案就是:你不认识的人。


总有一些你不认识的人,知道你想知道的东西。PaperWeekly 或许可以成为一座桥梁,促使不同背景、不同方向的学者和学术灵感相互碰撞,迸发出更多的可能性。 


PaperWeekly 鼓励高校实验室或个人,在我们的平台上分享各类优质内容,可以是最新论文解读,也可以是学术热点剖析科研心得竞赛经验讲解等。我们的目的只有一个,让知识真正流动起来。


📝 稿件基本要求:

• 文章确系个人原创作品,未曾在公开渠道发表,如为其他平台已发表或待发表的文章,请明确标注 

• 稿件建议以 markdown 格式撰写,文中配图以附件形式发送,要求图片清晰,无版权问题

• PaperWeekly 尊重原作者署名权,并将为每篇被采纳的原创首发稿件,提供业内具有竞争力稿酬,具体依据文章阅读量和文章质量阶梯制结算


📬 投稿通道:

• 投稿邮箱:hr@paperweekly.site 

• 来稿请备注即时联系方式(微信),以便我们在稿件选用的第一时间联系作者

• 您也可以直接添加小编微信(pwbot02)快速投稿,备注:姓名-投稿


△长按添加PaperWeekly小编




🔍


现在,在「知乎」也能找到我们了

进入知乎首页搜索「PaperWeekly」

点击「关注」订阅我们的专栏吧


·

登录查看更多
1

相关内容

【多伦多大学博士论文】深度学习中的训练效率和鲁棒性
【CVPR2022】基于知识蒸馏的高效预训练
专知会员服务
30+阅读 · 2022年4月23日
NeurIPS 2021 | 寻MixTraining: 一种全新的物体检测训练范式
专知会员服务
11+阅读 · 2021年12月9日
NeurIPS 2021 | 用简单的梯度下降算法逃离鞍点
专知会员服务
23+阅读 · 2021年12月6日
【CVPR 2020-商汤】8比特数值也能训练卷积神经网络模型
专知会员服务
24+阅读 · 2020年5月7日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
72+阅读 · 2020年4月24日
专知会员服务
44+阅读 · 2020年3月6日
手机上也能训练BERT和ResNet了?!
夕小瑶的卖萌屋
1+阅读 · 2022年7月25日
实践指南 | 图像分类中常用的tricks
极市平台
0+阅读 · 2021年10月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
23+阅读 · 2021年3月4日
Arxiv
13+阅读 · 2020年4月12日
已删除
Arxiv
31+阅读 · 2020年3月23日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
16+阅读 · 2018年4月2日
VIP会员
相关VIP内容
【多伦多大学博士论文】深度学习中的训练效率和鲁棒性
【CVPR2022】基于知识蒸馏的高效预训练
专知会员服务
30+阅读 · 2022年4月23日
NeurIPS 2021 | 寻MixTraining: 一种全新的物体检测训练范式
专知会员服务
11+阅读 · 2021年12月9日
NeurIPS 2021 | 用简单的梯度下降算法逃离鞍点
专知会员服务
23+阅读 · 2021年12月6日
【CVPR 2020-商汤】8比特数值也能训练卷积神经网络模型
专知会员服务
24+阅读 · 2020年5月7日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
72+阅读 · 2020年4月24日
专知会员服务
44+阅读 · 2020年3月6日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
相关论文
Arxiv
23+阅读 · 2021年3月4日
Arxiv
13+阅读 · 2020年4月12日
已删除
Arxiv
31+阅读 · 2020年3月23日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Arxiv
12+阅读 · 2019年2月26日
Arxiv
16+阅读 · 2018年4月2日
Top
微信扫码咨询专知VIP会员