Wildfires are a disastrous phenomenon which cause damage to land, loss of property, air pollution, and even loss of human life. Due to the warmer and drier conditions created by climate change, more severe and uncontrollable wildfires are expected to occur in the coming years. This could lead to a global wildfire crisis and have dire consequences on our planet. Hence, it has become imperative to use technology to help prevent the spread of wildfires. One way to prevent the spread of wildfires before they become too large is to perform early detection i.e, detecting the smoke before the actual fire starts. In this paper, we present our Wildfire Detection and Alert System which use machine learning to detect wildfire smoke with a high degree of accuracy and can send immediate alerts to users. Our technology is currently being used in the USA to monitor data coming in from hundreds of cameras daily. We show that our system has a high true detection rate and a low false detection rate. Our performance evaluation study also shows that on an average our system detects wildfire smoke faster than an actual person.


翻译:野火是一种灾难性现象,它造成土地损害、财产损失、空气污染,甚至人类生命损失。由于气候变化造成的温暖和干燥条件,预计今后几年会发生更严重和无法控制的野火。这可能导致全球野火危机,在我们星球上造成严重后果。因此,使用技术帮助防止野火蔓延变得势在必行。在野火蔓延之前防止野火蔓延的一个办法就是进行早期探测,即在实际火灾开始之前发现烟雾。在本文中,我们介绍了我们的野火探测和警报系统,该系统使用机器学习探测野火烟,并具有很高的准确性,可以向用户发出即时警报。我们的技术目前在美国用于监测每天从数百个摄像头上传来的数据。我们显示我们的系统有很高的真实探测率和低的假探测率。我们的业绩评估研究还表明,我们系统平均探测野火比实际人更快地探测出烟雾。

0
下载
关闭预览

相关内容

【2022新书】机器学习中的统计建模:概念和应用,398页pdf
专知会员服务
136+阅读 · 2022年11月5日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年12月22日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
11+阅读 · 2019年4月15日
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员