We present a new method for computing a smooth minimum distance function based on the LogSumExp function for point clouds, edge meshes, triangle meshes, and combinations of all three. We derive blending weights and a modified Barnes-Hut acceleration approach that ensure our method approximates the true distance, and is conservative (points outside the zero isosurface are guaranteed to be outside the surface) and efficient to evaluate for all the above data types. This, in combination with its ability to smooth sparsely sampled and noisy data, like point clouds, shortens the gap between data acquisition and simulation, and thereby enables new applications such as direct, co-dimensional rigid body simulation using unprocessed lidar data.
翻译:我们提出了一个基于 LogSumExp 函数的光滑最低距离函数计算方法, 用于计算点云、 边缘梅舍、 三角梅舍和所有三者组合的光滑最低距离函数。 我们得出混合权重和经修改的Barnes- Hut 加速法, 以确保我们的方法接近真实距离, 并且保守( 保证零异表外的点在表面之外), 并有效评估所有上述数据类型 。 这结合了它光滑的微弱抽样和吵闹数据( 如点云) 的能力, 缩短了数据获取和模拟之间的差距, 从而使得能够使用未处理的里雷达数据进行直接的、 共维的硬体模拟等新应用 。