Universal adversarial attacks, which hinder most deep neural network (DNN) tasks using only a small single perturbation called a universal adversarial perturbation (UAP), is a realistic security threat to the practical application of a DNN. In particular, such attacks cause serious problems in medical imaging. Given that computer-based systems are generally operated under a black-box condition in which only queries on inputs are allowed and outputs are accessible, the impact of UAPs seems to be limited because well-used algorithms for generating UAPs are limited to a white-box condition in which adversaries can access the model weights and loss gradients. Nevertheless, we demonstrate that UAPs are easily generatable using a relatively small dataset under black-box conditions. In particular, we propose a method for generating UAPs using a simple hill-climbing search based only on DNN outputs and demonstrate the validity of the proposed method using representative DNN-based medical image classifications. Black-box UAPs can be used to conduct both non-targeted and targeted attacks. Overall, the black-box UAPs showed high attack success rates (40% to 90%), although some of them had relatively low success rates because the method only utilizes limited information to generate UAPs. The vulnerability of black-box UAPs was observed in several model architectures. The results indicate that adversaries can also generate UAPs through a simple procedure under the black-box condition to foil or control DNN-based medical image diagnoses, and that UAPs are a more realistic security threat.


翻译:通用对抗性攻击阻碍着大多数最深的神经网络(DNN)任务,只使用一个叫通用对抗性干扰(UAP)的小小的单一扰动,这是对DNN实际应用的现实安全威胁。特别是,这种攻击在医疗成像方面造成严重问题。鉴于计算机系统一般在黑箱条件下运行,只允许对投入进行查询,而且产出可以获取,因此统一对抗性攻击的影响似乎有限,因为用于产生UAP的常用算法仅限于一种白箱状态,使对手能够利用模型重量和损失梯度。然而,我们证明在黑箱条件下,使用相对较小的数据集很容易产生新式攻击。特别是,我们提出一种方法,利用仅基于DNN产出的简单山坡扫描搜索,来生成新式系统,并展示拟议方法的有效性,使用具有代表性的DNNNW的医疗图像分类。基于黑箱的UAP可以用来进行非目标性和有针对性的攻击。总体而言,黑箱 UAP显示高攻击成功率(40 % ),在黑箱中也显示高攻击率,因为通过一些标准成功率,通过一些标准生成了标准。

0
下载
关闭预览

相关内容

在科学,计算和工程学中,黑盒是一种设备,系统或对象,可以根据其输入和输出(或传输特性)对其进行查看,而无需对其内部工作有任何了解。 它的实现是“不透明的”(黑色)。 几乎任何事物都可以被称为黑盒:晶体管,引擎,算法,人脑,机构或政府。为了使用典型的“黑匣子方法”来分析建模为开放系统的事物,仅考虑刺激/响应的行为,以推断(未知)盒子。 该黑匣子系统的通常表示形式是在该方框中居中的数据流程图。黑盒的对立面是一个内部组件或逻辑可用于检查的系统,通常将其称为白盒(有时也称为“透明盒”或“玻璃盒”)。
专知会员服务
44+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
6+阅读 · 2018年12月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月6日
Arxiv
12+阅读 · 2020年12月10日
Deflecting Adversarial Attacks
Arxiv
8+阅读 · 2020年2月18日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
VIP会员
相关VIP内容
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
已删除
将门创投
6+阅读 · 2018年12月3日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员