We propose a novel method for the inference of phylogenetic trees that utilises point configurations on hyperbolic space as its optimisation landscape. Each taxon corresponds to a point of the point configuration, while the evolutionary distance between taxa is represented by the geodesic distance between their corresponding points. The point configuration is iteratively modified to increase an objective function that additively combines pairwise log-likelihood terms. After convergence, the final tree is derived from the inter-point distances using a standard distance-based method. The objective function, which is shown to mimic the log-likelihood on tree space, is a differentiable function on a Riemannian manifold. Thus gradient-based optimisation techniques can be applied, avoiding the need for combinatorial rearrangements of tree topology.
翻译:我们建议一种新型的植物遗传树的推论方法,该方法使用双曲空间的点配置作为优化地貌的优化地貌。 每个分类符都对应点配置的某个点, 而分类组之间的进化距离则由对应点之间的大地测量距离代表。 点配置是迭代式的, 以增加一种客观功能, 将双向原木相似性条件相混合。 在趋同后, 最后的树是使用标准的距离法从点间距离中衍生而来。 目标函数显示在树间模仿日志相似性, 是Riemannian 方形上的一种不同功能。 因此可以应用基于梯度的优化技术, 从而避免了树本学的组合调整。