Let ${\cal G}$ be a minor-closed graph class. We say that a graph $G$ is a $k$-apex of ${\cal G}$ if $G$ contains a set $S$ of at most $k$ vertices such that $G\setminus S$ belongs to ${\cal G}.$ We denote by ${\cal A}_k ({\cal G})$ the set of all graphs that are $k$-apices of ${\cal G}.$ We prove that every graph in the obstruction set of ${\cal A}_k ({\cal G}),$ i.e., the minor-minimal set of graphs not belonging to ${\cal A}_k ({\cal G}),$ has size at most $2^{2^{2^{2^{{\sf poly}(k)}}}},$ where ${\sf poly}$ is a polynomial function whose degree depends on the size of the minor-obstructions of ${\cal G}.$ This bound drops to $2^{2^{{\sf poly}(k)}}$ when ${\cal G}$ excludes some apex graph as a minor.
翻译:让$$G$成为小封闭的图表类。 我们说, 图表$G$是每千美元 $G$, 如果$G$包含一套固定的美元, 最多为每千美元, 所以$Setminus S$属于$CG$。 我们用$Cal A ⁇ k ($CG}) 表示所有图表的组合, 单位为每千美元, 单位为每千美元。 我们证明, 每张图中的每一张是每千美元, 单位为每千美元, 单位为每千美元, 单位为每千美元, 单位为每千美元, 单位为每张小数, 单位为每千美元, 单位为每千美元, 单位为每千美元, 单位为每千美元, 单位为每千美元, 单位为每千美元, 单位为每千美元, 单位为每千美元。