Vision Transformers (ViTs) have demonstrated the state-of-the-art performance in various vision-related tasks. The success of ViTs motivates adversaries to perform backdoor attacks on ViTs. Although the vulnerability of traditional CNNs to backdoor attacks is well-known, backdoor attacks on ViTs are seldom-studied. Compared to CNNs capturing pixel-wise local features by convolutions, ViTs extract global context information through patches and attentions. Na\"ively transplanting CNN-specific backdoor attacks to ViTs yields only a low clean data accuracy and a low attack success rate. In this paper, we propose a stealth and practical ViT-specific backdoor attack $TrojViT$. Rather than an area-wise trigger used by CNN-specific backdoor attacks, TrojViT generates a patch-wise trigger designed to build a Trojan composed of some vulnerable bits on the parameters of a ViT stored in DRAM memory through patch salience ranking and attention-target loss. TrojViT further uses minimum-tuned parameter update to reduce the bit number of the Trojan. Once the attacker inserts the Trojan into the ViT model by flipping the vulnerable bits, the ViT model still produces normal inference accuracy with benign inputs. But when the attacker embeds a trigger into an input, the ViT model is forced to classify the input to a predefined target class. We show that flipping only few vulnerable bits identified by TrojViT on a ViT model using the well-known RowHammer can transform the model into a backdoored one. We perform extensive experiments of multiple datasets on various ViT models. TrojViT can classify $99.64\%$ of test images to a target class by flipping $345$ bits on a ViT for ImageNet.
翻译:视觉变异器( ViTs ) 展示了各种视觉相关任务中最先进的表现。 ViTs 的成功激励对手对 ViTs 进行幕后攻击。 虽然传统CNN 对幕后攻击的脆弱性是众所周知的, 但传统CNN对幕后攻击的脆弱性是众所周知的, 但是对ViTs 的幕后攻击却很少研究。 与CNN通过 Convolutions 捕捉像素式的地方特性相比, ViTs 通过补丁和关注度来提取全球背景信息。 将CNN 特定目标的后门攻击移植到 ViTs 的后门攻击中。 将CNN 目标的后门攻击后门攻击中最先进的数字移植到 ViT 的后门攻击后门攻击后门攻击后门攻击后攻击后攻击后攻击后攻击后攻击后攻击后攻击后攻击后攻击后攻击后攻击后攻击后攻击后攻击时, 将使用最精确的先导器, 将ViLOT 的先导到最易变变变变变变变变变的变变变变变式变式 。 向后攻击后攻击后变更变更变更变变变式, 向后攻击后攻击后攻击后攻击后攻击后攻击后攻击后先行, 向后变更变更变后变后变换后变后变后变后变。