Characterizing the cumulative burden of COVID-19 by race/ethnicity is of the utmost importance for public health researchers and policy makers in order to design effective mitigation measures. This analysis is hampered, however, by surveillance case data with substantial missingness in race and ethnicity covariates. Worse yet, this missingness likely depends on the values of these missing covariates, i.e. they are not missing at random (NMAR). We propose a Bayesian parametric model that leverages joint information on spatial variation in the disease and covariate missingness processes and can accommodate both MAR and NMAR missingness. We show that the model is locally identifiable when the spatial distribution of the population covariates is known and observed cases can be associated with a spatial unit of observation. We also use a simulation study to investigate the model's finite-sample performance. We compare our model's performance on NMAR data against complete-case analysis and multiple imputation (MI), both of which are commonly used by public health researchers when confronted with missing categorical covariates. Finally, we model spatial variation in cumulative COVID-19 incidence in Wayne County, Michigan using data from the Michigan Department and Health and Human Services. The analysis suggests that population relative risk estimates by race during the early part of the COVID-19 pandemic in Michigan were understated for non-white residents compared to white residents when cases missing race were dropped or had these values imputed using MI.


翻译:对公共卫生研究人员和决策者来说,将COVID-19按种族/族裔划分的累积负担确定为COVID-19的累积负担至关重要,以便设计有效的缓解措施。然而,这一分析受到种族和族裔共同差异严重缺失的监视案例数据的阻碍。更糟糕的是,这种缺失可能取决于这些失踪的共变体的值,即它们并非随机失踪(NMAR)。我们提出了一个巴伊西亚参数模型,利用关于疾病和共变失踪过程空间差异和共变失踪过程的联合信息,并能够兼顾MAR和NMAR的缺失。我们表明,当了解人口变异体的空间分布和观察到的案件与空间观察单位有关时,该模型是可在当地识别的。我们还利用模拟研究研究来调查模型的有限抽样性表现。我们比较了NMAR数据与全例分析和多重估算(MI)的绩效,这两个模型在公共卫生研究人员遇到缺失的绝对共变异性时通常使用。最后,我们将韦恩州、密歇根根基州和密歇根基州居民的累积COVI发生频率变化时的CO-19的频率进行空间变化。根据密歇歇根根根根根根根根根根比分析,根据密根根部的统计部的统计部的统计分析,对人口和内的人口进行了这些比比分析,根据人类的统计分析,对密歇根基根基根基系居民进行了比较。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
153+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月5日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员