Counterfactual Regret Minimization (CFR) and its variants are the best algorithms so far for solving large-scale incomplete information games. However, we believe that there are two problems with CFR: First, matrix multiplication is required in CFR iteration, and the time complexity of one iteration is too high; Secondly, the game characteristics in the real world are different. Just using one CFR algorithm will not be perfectly suitable for all game problems. For these two problems, this paper proposes a new algorithm called Pure CFR (PCFR) based on CFR. PCFR can be seen as a combination of CFR and Fictitious Play (FP), inheriting the concept of counterfactual regret (value) from CFR, and using the best response strategy instead of the regret matching strategy for the next iteration. This algorithm has three advantages. First, PCFR can be combined with any CFR variant. The resulting Pure MCCFR (PMCCFR) can significantly reduce the time and space complexity of one iteration. Secondly, our experiments show that the convergence speed of the PMCCFR is 2$\sim$3 times that of the MCCFR. Finally, there is a type of game that is very suitable for PCFR, we call this type of game clear-game, which is characterized by a high proportion of dominated strategies. Experiments show that in clear-game, the convergence rate of PMCCFR is two orders of magnitude higher than that of MCCFR.
翻译:暂无翻译