We present mechanoChemML, a machine learning software library for computational materials physics. mechanoChemML is designed to function as an interface between platforms that are widely used for machine learning on one hand, and others for solution of partial differential equations-based models of physics. Of special interest here, and the focus of mechanoChemML, are applications to computational materials physics. These typically feature the coupled solution of material transport, reaction, phase transformation, mechanics, heat transport and electrochemistry. Central to the organization of mechanoChemML are machine learning workflows that arise in the context of data-driven computational materials physics. The mechanoChemML code structure is described, the machine learning workflows are laid out and their application to the solution of several problems in materials physics is outlined.
翻译:我们介绍了计算材料物理学的机械学习软件图书馆MachanoChemmal。 机械化化学旨在作为广泛用于机器学习的平台与用于解决部分差异方程物理模型的其他平台之间的接口。这里特别感兴趣,而且机械化化学的重点是计算材料物理学的应用。这些应用通常以材料运输、反应、阶段转换、机械、热运输和电化学等结合的解决办法为特点。机械化化学组织的核心是数据驱动计算材料物理学背景下产生的机器学习工作流程。描述了机械化化学物质代码结构,提出了机器学习工作流程,并概述了机器对材料物理中若干问题的解决办法的应用。