Steganography conceals the secret message into the cover media, generating a stego media which can be transmitted on public channels without drawing suspicion. As its countermeasure, steganalysis mainly aims to detect whether the secret message is hidden in a given media. Although the steganography techniques are improving constantly, the sophisticated steganalysis can always break a known steganographic method to some extent. With a stego media discovered, the adversary could find out the sender or receiver and coerce them to disclose the secret message, which we name as coercive attack in this paper. Inspired by the idea of deniable encryption, we build up the concepts of deniable steganography for the first time and discuss the feasible constructions for it. As an example, we propose a receiver-deniable steganographic scheme to deal with the receiver-side coercive attack using deep neural networks (DNN). Specifically, besides the real secret message, a piece of fake message is also embedded into the cover. On the receiver side, the real message can be extracted with an extraction module; while once the receiver has to surrender a piece of secret message under coercive attack, he can extract the fake message to deceive the adversary with another extraction module. Experiments demonstrate the scalability and sensitivity of the DNN-based receiver-deniable steganographic scheme.


翻译:摄制法将秘密信息隐藏在隐蔽媒体中,产生一种可以不经怀疑在公共渠道上传播的秘密媒体。 作为其反制措施, 石化分析主要旨在检测秘密信息是否隐藏在特定媒体中。 虽然石化法正在不断改进, 复杂的石化法总能在某种程度上打破已知的石化法。 有了一台石化媒体, 对手可以找到发送者或接收者, 并强迫他们披露秘密信息, 我们在本文中将其命名为胁迫性攻击 。 在可辨识的加密理念的启发下, 我们首次建立可辨识的石化法概念, 并讨论其可行的构思。 例如, 我们提出一个接收者可辨识的石化方法, 用深神经网络( DNNN) 对付接收者- 胁迫性攻击。 具体地说, 除了真实的秘密信息外, 一张假信息也嵌入了封面中。 在接收方, 真实信息可以被提取出一个提取模块; 一旦接收者不得不交出一个在胁迫性实验性攻击下的秘密信息的一部分, 他可以提取另一个磁感。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
39+阅读 · 2020年9月6日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月8日
Arxiv
22+阅读 · 2022年3月31日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
39+阅读 · 2020年9月6日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员