In plant breeding the presence of a genotype by environment (GxE) interaction has a strong impact on cultivation decision making and the introduction of new crop cultivars. The combination of linear and bilinear terms has been shown to be very useful in modelling this type of data. A widely-used approach to identify GxE is the Additive Main Effects and Multiplicative Interaction Effects (AMMI) model. However, as data frequently can be high-dimensional, Markov chain Monte Carlo (MCMC) approaches can be computationally infeasible. In this article, we consider a variational inference approach for such a model. We derive variational approximations for estimating the parameters and we compare the approximations to MCMC using both simulated and real data. The new inferential framework we propose is on average two times faster whilst maintaining the same predictive performance as MCMC.
翻译:在培育一种环境基因型(GxE)相互作用的植物时,对种植决策和引进新的作物栽培品种有很大影响。线性和双线性词的结合已证明在模拟这类数据方面非常有用。一种广泛使用的确定GxE的方法是增加主要效应和倍增效应(AMMI)模型。然而,由于数据往往可以是高维的,因此Markov链Monte Carlo(MCMC)方法在计算上是行不通的。在本篇文章中,我们考虑了这种模型的变式推论方法。我们用模拟数据和真实数据来估计参数和双线性词的组合,我们用变式近似值与MCMC比较。我们提出的新的推论框架平均速度为2倍,同时保持与MCC相同的预测性能。