We first prove a new separating hyperplane theorem characterizing when a pair of compact convex subsets $K, K'$ of the Euclidean space intersect, and when they are disjoint. The theorem is distinct from classical separation theorems. It generalizes the {\it distance duality} proved in our earlier work for testing the membership of a distinguished point in the convex hull of a finite point set. Next by utilizing the theorem, we develop a substantially generalized and stronger version of the {\it Triangle Algorithm} introduced in the previous work to perform any of the following three tasks: (1) To compute a pair $(p,p') \in K \times K'$, where either the Euclidean distance $d(p,p')$ is to within a prescribed tolerance, or the orthogonal bisecting hyperplane of the line segment $pp'$ separates the two sets; (2) When $K$ and $K'$ are disjoint, to compute $(p,p') \in K \times K'$ so that $d(p,p')$ approximates $d(K,K')$ to within a prescribed tolerance; (3) When $K$ and $K'$ are disjoint, to compute a pair of parallel supporting hyperplanes $H,H'$ so that $d(H,H')$ is to within a prescribed tolerance of the optimal margin. The worst-case complexity of each iteration is solving a linear objective over $K$ or $K'$. The resulting algorithm is a fully polynomial-time approximation scheme for such important special cases as when $K$ and $K'$ are convex hulls of finite points sets, or the intersection of a finite number of halfspaces. The results find many theoretical and practical applications, such as in machine learning, statistics, linear, quadratic and convex programming. In particular, in a separate article we report on a comparison of the Triangle Algorithm and SMO for solving the hard margin problem. In future work we extend the applications to combinatorial and NP-complete problems.


翻译:当一对紧凑的旋律子集K, Euclidean 空间的K'$, 以及当它们脱钩时,我们首先证明一个新的分离超平面的理论特征。 理论与经典的分离理论有区别。 它概括了我们早期测试线段圆球体中一个显著点的成份。 利用线段的正方美元, 我们开发了一个非常普遍、 更强的版本。 当以前的工程中引入了 超离子三角平流子子子子子子子子子( K), 当以下三个任务中的任何一项任务:(1) 计算一对的美元( p, p') 和Ktriental 理论模型, 当 Euclidean( p, p') 距离在一定的容忍范围内, 或者在线段的双向双向双向双向双向双向。 当平流中, 美元和平流的正方美元, 当一个特殊的直径直径( K) 和直径直方的直立度, 当一个K的直径直径直方数据, 当一个直方的直方数据中, 直方( 直方美元, 直方的平方的对一个K) 直方数据, 直到一个直方的对一个直方, 直方, 直方的对一个K 直方, 直方的直方, 直方, 直方的对方, 直方的直方数据, 直方的直方的对方的对方的对方的直方的对方的对方的对方的对方, 。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
专知会员服务
162+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
机器学习线性代数速查
机器学习研究会
19+阅读 · 2018年2月25日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员