Molecular classification has transformed the management of brain tumors by enabling more accurate prognostication and personalized treatment. However, timely molecular diagnostic testing for patients with brain tumors is limited, complicating surgical and adjuvant treatment and obstructing clinical trial enrollment. In this study, we developed DeepGlioma, a rapid ($< 90$ seconds), artificial-intelligence-based diagnostic screening system to streamline the molecular diagnosis of diffuse gliomas. DeepGlioma is trained using a multimodal dataset that includes stimulated Raman histology (SRH); a rapid, label-free, non-consumptive, optical imaging method; and large-scale, public genomic data. In a prospective, multicenter, international testing cohort of patients with diffuse glioma ($n=153$) who underwent real-time SRH imaging, we demonstrate that DeepGlioma can predict the molecular alterations used by the World Health Organization to define the adult-type diffuse glioma taxonomy (IDH mutation, 1p19q co-deletion and ATRX mutation), achieving a mean molecular classification accuracy of $93.3\pm 1.6\%$. Our results represent how artificial intelligence and optical histology can be used to provide a rapid and scalable adjunct to wet lab methods for the molecular screening of patients with diffuse glioma.
翻译:分子分型通过实现更准确的预后评估和个性化治疗,彻底改变了脑瘤的管理方式。然而,对于脑瘤患者进行及时的分子诊断测试非常有限,使手术和辅助治疗更复杂,且阻碍了临床试验的招募。在本研究中,我们开发了 DeepGlioma,一种基于人工智能的快速(小于 $90$ 秒)诊断筛查系统,以加速诊断弥漫性胶质瘤的分子学诊断。DeepGlioma 是使用包含受激拉曼组织学(SRH)以及大规模公共基因组数据的多模式数据集进行训练的。SRH 是一种快速、无标签、非消耗性、光学成像方法。在一个前瞻性、多中心、国际测试队列中,对于接受实时 SRH 成像的 $153$ 名弥漫性胶质瘤患者,我们展示了 DeepGlioma 可以预测由世界卫生组织用于定义成人型弥漫性胶质瘤分类法的分子变化(IDH 突变、1p19q 共删除和 ATRX 突变),实现了平均分子分类准确度为 $93.3\pm 1.6\%$。我们的结果展示了人工智能和光学组织学如何用于为弥漫性胶质瘤患者的分子诊断提供快速、可扩展的方法。