This paper introduces a decentralized state-dependent Markov chain synthesis method for probabilistic swarm guidance of a large number of autonomous agents to a desired steady-state distribution. The probabilistic swarm guidance approach is based on using a Markov chain that determines the transition probabilities of agents to transition from one state to another while satisfying prescribed transition constraints and converging to a desired steady-state distribution. Our main contribution is to develop a decentralized approach to the Markov chain synthesis that updates the underlying column stochastic Markov matrix as a function of the state, i.e., the current swarm probability distribution. Having a decentralized synthesis method eliminates the need to have complex communication architecture. Furthermore, the proposed method aims to cause a minimal number of state transitions to minimize resource usage while guaranteeing convergence to the desired distribution. It is also shown that the convergence rate is faster when compared with previously proposed methodologies.


翻译:本文介绍了一种分散的依赖于国家的Markov链式综合方法,用于对大量自主剂进行概率组合指导,使其达到理想的稳定分布。概率组合式指导方法的基础是使用一个Markov链式系统,该链式系统确定从一个国家向另一个国家过渡的过渡概率,同时满足规定的过渡限制,并与理想的稳定分布相融合。我们的主要贡献是制定对Markov链式综合方法的分散化方法,该方法更新了作为国家函数的Stochestic Markov 底列的随机分布,即目前的湿概率分布。如果采用分散化综合方法,则消除了建立复杂通信结构的必要性。此外,拟议方法的目的是在保证与预期分布一致的同时,尽量减少资源使用率的最低限度国家过渡。还表明,与先前提出的方法相比,趋同率更快。

0
下载
关闭预览

相关内容

马尔可夫链,因安德烈·马尔可夫(A.A.Markov,1856-1922)得名,是指数学中具有马尔可夫性质的离散事件随机过程。该过程中,在给定当前知识或信息的情况下,过去(即当前以前的历史状态)对于预测将来(即当前以后的未来状态)是无关的。 在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。状态的改变叫做转移,与不同的状态改变相关的概率叫做转移概率。随机漫步就是马尔可夫链的例子。随机漫步中每一步的状态是在图形中的点,每一步可以移动到任何一个相邻的点,在这里移动到每一个点的概率都是相同的(无论之前漫步路径是如何的)。
专知会员服务
53+阅读 · 2020年9月7日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
97+阅读 · 2020年5月31日
专知会员服务
162+阅读 · 2020年1月16日
写缓冲(change buffer),这次彻底懂了!!!
架构师之路
5+阅读 · 2019年6月25日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
已删除
将门创投
11+阅读 · 2019年4月26日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年2月4日
Arxiv
8+阅读 · 2018年6月19日
VIP会员
相关资讯
写缓冲(change buffer),这次彻底懂了!!!
架构师之路
5+阅读 · 2019年6月25日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
已删除
将门创投
11+阅读 · 2019年4月26日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员