While a substantial literature on structural break change point analysis exists for univariate time series, research on large panel data models has not been as extensive. In this paper, a novel method for estimating panel models with multiple structural changes is proposed. The breaks are allowed to occur at unknown points in time and may affect the multivariate slope parameters individually. Our method adapts Haar wavelets to the structure of the observed variables in order to detect the change points of the parameters consistently. We also develop methods to address endogenous regressors within our modeling framework. The asymptotic property of our estimator is established. In our application, we examine the impact of algorithmic trading on standard measures of market quality such as liquidity and volatility over a time period that covers the financial meltdown that began in 2007. We are able to detect jumps in regression slope parameters automatically without using ad-hoc subsample selection criteria.


翻译:虽然关于结构断裂点分析的大量文献用于单轨时间序列,但对大型面板数据模型的研究没有那么广泛。 在本文中,提出了一种新颖的方法来估计具有多重结构变化的面板模型。 允许在未知的时间点进行断裂, 并可能对多变量坡度参数单独产生影响。 我们的方法是让孔波子波子适应观测到的变量结构, 以便一致地检测参数的变化点。 我们还开发了方法, 在模型框架内处理内生递减者。 我们的估量器的无药可依特性已经建立。 我们的应用中, 我们研究了算法交易对标准市场质量计量的影响, 如流动性和波动, 时间段覆盖2007年开始的金融崩溃。 我们可以在不使用 ad-hoc 子抽样选择标准的情况下, 自动检测回归坡度参数的跳动。

0
下载
关闭预览

相关内容

可靠深度异常检测,34页ppt,Google Balaji Lakshminarayanan讲解
专知会员服务
53+阅读 · 2020年9月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月15日
Arxiv
0+阅读 · 2021年11月14日
Arxiv
3+阅读 · 2018年1月31日
VIP会员
相关资讯
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员