While a substantial literature on structural break change point analysis exists for univariate time series, research on large panel data models has not been as extensive. In this paper, a novel method for estimating panel models with multiple structural changes is proposed. The breaks are allowed to occur at unknown points in time and may affect the multivariate slope parameters individually. Our method adapts Haar wavelets to the structure of the observed variables in order to detect the change points of the parameters consistently. We also develop methods to address endogenous regressors within our modeling framework. The asymptotic property of our estimator is established. In our application, we examine the impact of algorithmic trading on standard measures of market quality such as liquidity and volatility over a time period that covers the financial meltdown that began in 2007. We are able to detect jumps in regression slope parameters automatically without using ad-hoc subsample selection criteria.
翻译:虽然关于结构断裂点分析的大量文献用于单轨时间序列,但对大型面板数据模型的研究没有那么广泛。 在本文中,提出了一种新颖的方法来估计具有多重结构变化的面板模型。 允许在未知的时间点进行断裂, 并可能对多变量坡度参数单独产生影响。 我们的方法是让孔波子波子适应观测到的变量结构, 以便一致地检测参数的变化点。 我们还开发了方法, 在模型框架内处理内生递减者。 我们的估量器的无药可依特性已经建立。 我们的应用中, 我们研究了算法交易对标准市场质量计量的影响, 如流动性和波动, 时间段覆盖2007年开始的金融崩溃。 我们可以在不使用 ad-hoc 子抽样选择标准的情况下, 自动检测回归坡度参数的跳动。