The analysis left truncated and right censored data is very common in survival and reliability analysis. In lifetime studies patients often subject to left truncation in addition to right censoring. For example, in bone marrow transplant studies based on International Bone Marrow Transplant Registry (IBMTR), the patients who die while waiting for the transplants will not be reported to the IBMTR. In this paper, we develop novel U-statistics under left truncation and right censoring. We prove the $\sqrt{n}$-consistency of the proposed U-statistics. We derive the asymptotic distribution of the U-statistics using counting process technique. As an application of the U-statistics, we develop a simple non-parametric test for testing the independence between time to failure and cause of failure in competing risks when the observations are subject to left truncation and right censoring. The finite sample performance of the proposed test is evaluated through Monte Carlo simulation study. Finally we illustrate our test procedure using lifetime data of transformers.
翻译:在生存和可靠性分析中,左侧截断和右侧检查数据分析非常常见。在终生研究中,除了右侧检查外,经常左侧截断。例如,在基于国际骨髓移植注册(IBMTR)的骨髓移植研究中,在等待移植期间死亡的病人不会向IBMTR报告。在本文中,我们开发了在左侧截断和右侧检查下的新U-统计学。我们证明了拟议的U-统计学的耐久性。我们利用计数过程技术得出U-统计学的无症状分布。作为U-统计学的应用,我们开发了一个简单的非参数测试,以测试在观察结果发生左侧截断和右检查时,在时间到失败和导致相互竞争风险之间是否独立。通过蒙特卡洛模拟研究对拟议测试的有限样本性表现进行了评估。最后,我们用变压器的终身数据来说明我们的测试程序。