In this paper, we propose two novel approaches for hypergraph comparison. The first approach transforms the hypergraph into a graph representation for use of standard graph dissimilarity measures. The second approach exploits the mathematics of tensors to intrinsically capture multi-way relations. For each approach, we present measures that assess hypergraph dissimilarity at a specific scale or provide a more holistic multi-scale comparison. We test these measures on synthetic hypergraphs and apply them to biological datasets.
翻译:在本文中,我们提出了两种新颖的超时图比较方法。第一种方法是将超时图转换成图表表示法,用于使用标准图表差异性测量。第二种方法是利用高频的数学内在地捕捉多路关系。对于每一种方法,我们提出一些措施,评估超时差异,或者提供更全面的多尺度比较。我们在合成超时图上测试这些措施,并将其应用到生物数据集中。