Semi-parametric regression models are used in several applications which require comprehensibility without sacrificing accuracy. Typical examples are spline interpolation in geophysics, or non-linear time series problems, where the system includes a linear and non-linear component. We discuss here the use of a finite Determinantal Point Process (DPP) for approximating semi-parametric models. Recently, Barthelm\'e, Tremblay, Usevich, and Amblard introduced a novel representation of some finite DPPs. These authors formulated extended L-ensembles that can conveniently represent partial-projection DPPs and suggest their use for optimal interpolation. With the help of this formalism, we derive a key identity illustrating the implicit regularization effect of determinantal sampling for semi-parametric regression and interpolation. Also, a novel projected Nystr\"om approximation is defined and used to derive a bound on the expected risk for the corresponding approximation of semi-parametric regression. This work naturally extends similar results obtained for kernel ridge regression.
翻译:某些应用中使用了半参数回归模型,这些应用需要不牺牲精确度的可理解性。典型的例子有地球物理学中的插图,或非线性时间序列问题,其中系统包括线性和非线性部分。我们在这里讨论使用一个有限的半参数点进程(DPP)来模拟半参数模型。最近,Barthelm\'e, Tremblay, Usevich, 和Amblard 引进了某种有限DPP的新表述。这些作者设计了能够方便地代表部分投影 DPP的扩展L组装,并建议将其用于最佳的内推。在这种形式主义的帮助下,我们得出一个关键特征,说明半参数回归和内推法的确定性取样的隐含的正规化效果。此外,新颖的预测Nystr\\"om近似值被界定并用来对半参数回归的相应近值的预期风险进行约束。这项工作自然扩展了为内核脊脊后回归取得的类似结果。