Mining subgraphs with interesting structural properties from networks (or graphs) is a computationally challenging task. In this paper, we propose two algorithms for enumerating all connected induced subgraphs of a given cardinality from networks (or connected undirected graphs in networks). The first algorithm is a variant of a previous well-known algorithm. The algorithm enumerates all connected induced subgraphs of cardinality $k$ in a bottom-up manner. The data structures that lead to unit time element checking and linear space are presented. Different from previous algorithms that either work in a bottom-up manner or a reverse search manner, an algorithm that enumerates all connected induced subgraphs of cardinality $k$ in a top-down manner is proposed. The correctness and complexity of the top-down algorithm are theoretically analyzed and proven. In the experiments, we evaluate the efficiency of the algorithms using a set of real-world networks from various fields. Experimental results show that the variant bottom-up algorithm outperforms the state-of-the-art algorithms for enumerating connected induced subgraphs of small cardinality, and the top-down algorithm can achieve an order of magnitude speedup over the state-of-the-art algorithms for enumerating connected induced subgraphs of large cardinality.


翻译:具有网络( 或图形) 中有趣的结构属性的采矿子图是一个具有进化挑战性的任务。 在本文中, 我们提出两个算法, 用来从网络( 或网络中未连接的图表) 中列出所有连接的引出的基本人物( 或网络中未连接的图表) 。 第一个算法是以前众所周知的算法的变体。 算法以自下而上的方式列出了所有连接的基点( 或图形) 的子集。 算法以自下而上的方式列出了所有连接的引出的基本人物( 或网络中未连接的图表) 。 算法以自下而上的方式列出了所有连接的基点( 或图) 的子集 。 实验结果显示, 导致单位时间元素检查和线性空间的数据结构不同。 不同于以自下而上而起的方式工作或逆向搜索方式计算的所有前算法, 以自上而下而上而下的方式列出所有连接的主要基本人物( $ k$ ) 的子集, 和自上而下而下而上而上而上之的算的算算法数字可以实现一个大的规模。</s>

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
专知会员服务
42+阅读 · 2020年12月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月8日
Arxiv
0+阅读 · 2023年5月5日
Arxiv
92+阅读 · 2021年5月17日
VIP会员
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员