We propose Deep Estimators of Features (DEFs), a learning-based framework for predicting sharp geometric features in sampled 3D shapes. Differently from existing data-driven methods, which reduce this problem to feature classification, we propose to regress a scalar field representing the distance from point samples to the closest feature line on local patches. Our approach is the first that scales to massive point clouds by fusing distance-to-feature estimates obtained on individual patches. We extensively evaluate our approach against five baselines on newly proposed synthetic and real-world 3D CAD model benchmarks. Our approach not only outperforms the baselines (with improvements in Recall and False Positives Rates), but generalizes to real-world scans after training our model on synthetic data and fine-tuning it on a small dataset of scanned data. We demonstrate a downstream application, where we reconstruct an explicit representation of straight and curved sharp feature lines from range scan data.
翻译:我们建议“深度地貌”动画仪(Defers),这是一个用于预测抽样的3D形状的直径几何特征的学习基础框架。与现有的数据驱动方法不同,这些方法将这一问题降低到特征分类,我们提议将代表点样到地方补丁最接近的特征线的缩放场倒退。我们的方法是通过对单个补丁进行远程到功能的估算,对大规模点云进行比例尺。我们根据新提议的合成和真实世界3D CAD模型基准的五个基线,对我们的方法进行了广泛的评估。我们的方法不仅优于基线(在回溯率和假阳性率方面有所改进),而且在培训了我们的合成数据模型并微调了扫描数据的小数据集之后,对真实世界的扫描进行了概括化。我们展示了一种下游应用,我们从范围扫描数据中重建了直线和弯曲的锐度特征线的清晰表示。