Generative models augmented with external tools and update mechanisms (or \textit{agents}) have demonstrated capabilities beyond intelligent prompting of base models. As agent use proliferates, dynamic multi-agent systems have naturally emerged. Recent work has investigated the theoretical and empirical properties of low-dimensional representations of agents based on query responses at a single time point. This paper introduces the Temporal Data Kernel Perspective Space (TDKPS), which jointly embeds agents across time, and proposes several novel hypothesis tests for detecting behavioral change at the agent- and group-level in black-box multi-agent systems. We characterize the empirical properties of our proposed tests, including their sensitivity to key hyperparameters, in simulations motivated by a multi-agent system of evolving digital personas. Finally, we demonstrate via natural experiment that our proposed tests detect changes that correlate sensitively, specifically, and significantly with a real exogenous event. As far as we are aware, TDKPS is the first principled framework for monitoring behavioral dynamics in black-box multi-agent systems -- a critical capability as generative agent deployment continues to scale.


翻译:通过集成外部工具与更新机制(或称智能体)增强的生成模型,已展现出超越基础模型智能提示的能力。随着智能体应用的普及,动态多智能体系统自然涌现。近期研究基于单时间点的查询响应,探讨了智能体低维表示的理论与实证特性。本文提出时序数据核视角空间,该框架能够跨时间联合嵌入智能体,并针对黑盒多智能体系统中智能体层面及群体层面的行为变化,提出了若干新颖的假设检验方法。我们通过基于演化数字角色多智能体系统的仿真实验,刻画了所提检验方法的实证特性,包括其对关键超参数的敏感性。最后,我们通过自然实验证明,所提检验方法检测到的变化与真实外生事件存在敏感、特异且显著的相关性。据我们所知,时序数据核视角空间是首个用于监测黑盒多智能体系统行为动态的规范化框架——这一能力在生成式智能体部署持续扩展的背景下至关重要。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年9月13日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
17+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员