Scoring systems, as simple classification models, have significant advantages in interpretability and transparency when making predictions. They facilitate humans' decision-making by allowing them to make a quick prediction by hand through adding and subtracting a few point scores and thus have been widely used in various fields such as medical diagnosis of Intensive Care Units. However, (un)fairness issues in these models have long been criticized, and the use of biased data in the construction of score systems heightens this concern. In this paper, we propose a general framework to create data-driven fairness-aware scoring systems. Our approach is first to develop a social welfare function that incorporates both efficiency and equity. Then, we translate the social welfare maximization problem in economics into the empirical risk minimization task of the machine learning community to derive a fairness-aware scoring system with the help of mixed integer programming. We show that the proposed framework provides practitioners or policymakers great flexibility to select their desired fairness requirements and also allows them to customize their own requirements by imposing various operational constraints. Experimental evidence on several real data sets verifies that the proposed scoring system can achieve the optimal welfare of stakeholders and balance the interpretability, fairness, and efficiency issues.


翻译:分类系统作为简单的分类模型,在作出预测时具有解释性和透明度方面的重大优势,有助于人类决策,通过增加和减去几个点分数,通过手工快速预测,从而在诸如对集中护理单位的医疗诊断等各个领域广泛使用,然而,长期以来,这些模型中的不公平问题一直受到批评,在建立得分系统时使用偏差数据加剧了这种关切。在本文件中,我们提出了一个创建数据驱动的公平性评分系统的一般框架。我们的方法首先是发展一种社会福利功能,既包括效率又包括公平。然后,我们把经济领域的社会福利最大化问题转化为机构学习社区的经验风险最小化任务,以便利用混合整数规划来形成公平性的评分系统。我们表明,拟议的框架为从业者或决策者提供了选择所希望的公平性要求的巨大灵活性,并使他们能够通过施加各种操作限制来定制自己的要求。关于若干实际数据集的实验性证据证实,拟议的评分系统能够实现利益攸关方的最佳福利,平衡解释性、公正性、有效性和效率问题。

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
SIGIR2019 接收论文列表
专知
18+阅读 · 2019年4月20日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关VIP内容
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
SIGIR2019 接收论文列表
专知
18+阅读 · 2019年4月20日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员