Fourier series multiscale method, a concise and efficient analytical approach for multiscale computation, will be developed out of this series of papers. The second paper is concerned with simultaneous approximation to functions and their (partial) derivatives. On the basis of sufficient conditions of 2r (r is a positive integer) times term-by-term differentiation of Fourier series, a one-dimensional or two-dimensional function with general boundary conditions is decomposed into the linear combination of a corner function that describes the discontinuities at corners of the domain (only for the two-dimensional function), boundary functions that describe the discontinuities on boundaries of the domain and an internal function that describes the smoothness within the domain. It leads to the methodology of simultaneous approximation of functions and their (partial) derivatives with composite Fourier series. And specifically, for the algebraical polynomial based composite Fourier series method, the reproducing property of complete algebraical polynomials is theoretically analyzed and the approximation accuracy is validated with numerical examples. This study generalizes the Fourier series method with supplementary terms to simultaneous approximation of functions and their (partial) derivatives up to 2rth order.
翻译:将在本系列论文中制定一套简单、高效的多尺度分析方法,即多尺度计算法。第二份文件涉及功能及其(部分)衍生物同时近似于功能及其(部分)衍生物。根据Fourier系列2r(r为正整数)的足够条件,对Fourier系列进行逐个定期区分,一个带有一般边界条件的一维或二维功能将分解成一个角函数线性组合的线性组合,该角函数描述域角的不连续性(仅用于二维功能),边界函数描述域边界的不连续性和描述域内平滑的内部函数。它导致功能及其(部分)衍生物与复合Fourier系列同时近似及其(部分)衍生物与复合Fourier系列的(部分)衍生物的方法学。具体来说,基于代数复合Fourier系列法的复合多面序列法是理论上分析的,近似精度以数字实例加以验证。本研究报告将四级系列方法概括为功能同时近似性,补充功能及其(部分)衍生物近似性至2rth顺序的术语。