We compute the vacuum local modular Hamiltonian associated with a space ball region in the free scalar massive Quantum Field Theory. We give an explicit expression on the one particle Hilbert space in terms of the massive Legendre differential operator and the Green integral for the Helmholtz operator. The quadratic form of the massive modular Hamiltonian is expressed in terms of an integral of the energy density with parabolic distribution and of a Yukawa potential, that here appears intrinsically. We then get the formula for the local entropy of a Klein-Gordon wave packet. This gives the vacuum relative entropy of a coherent state on the double cone von Neumann algebras associated with the free scalar QFT. Among other points, we have a criterion for a Bogoliubov automorphism to be locally weakly inner and we provide the passivity characterisation of the modular Hamiltonian within the standard subspace set up.
翻译:我们计算了与空间球区域相关的真空局部单元汉密尔顿仪, 与自由卡路里大型量子场理论中的空间球区域相关。 我们用巨大的图例差异操作员和赫尔姆霍尔茨操作员的绿色集成来明确表达一个粒子Hilbert空间。 大型单元汉密尔顿仪的四方形形式表现为具有抛物面分布和Yukawa潜力的能量密度的有机组成部分。 然后我们获得了克莱因- 哥尔登波包的本地星块的公式。 这使得与自由卡路里QF相关的双锥体Von Neumann algebras 上的真空相对同步状态。 除其他要点外, 我们有一个标准标准, 使Bogoliuubov 自动形态在本地内部变弱, 我们提供了标准子空间设置内模块汉密尔顿波包的被动特性。