Predicting and comparing algorithm performance on graph instances is challenging for multiple reasons. First, there is usually no standard set of instances to benchmark performance. Second, using existing graph generators results in a restricted spectrum of difficulty and the resulting graphs are usually not diverse enough to draw sound conclusions. That is why recent work proposes a new methodology to generate a diverse set of instances by using an evolutionary algorithm. We can then analyze the resulting graphs and get key insights into which attributes are most related to algorithm performance. We can also fill observed gaps in the instance space in order to generate graphs with previously unseen combinations of features. This methodology is applied to the instance space of the Hamiltonian completion problem using two different solvers, namely the Concorde TSP Solver and a multi-start local search algorithm.


翻译:在图表中预测和比较算法性能由于多种原因具有挑战性。 首先,通常没有标准基准性能实例。 其次,利用现有的图形生成器导致的难度范围有限,因此产生的图表通常不够多样化,无法得出正确的结论。 这就是为什么最近的工作提出了一个新方法,通过使用进化算法产生多种实例。 然后,我们可以分析所产生的图表,并获得关键洞察力,了解哪些属性与算法性能关系最密切。 我们还可以填补在实例空间中观察到的差距,以便生成与先前看不见的特征组合有关的图表。 这种方法将使用两个不同的解算器,即Concorde TSP Solveer和多启动的本地搜索算法,用于汉密尔顿完成问题的示例空间。

0
下载
关闭预览

相关内容

最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
【ICML2020】图神经网络基准,53页ppt,NUS-Xavier Bresson
专知会员服务
57+阅读 · 2020年7月18日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
已删除
将门创投
12+阅读 · 2018年6月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
0+阅读 · 2021年3月11日
AutoML: A Survey of the State-of-the-Art
Arxiv
69+阅读 · 2019年8月14日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
69+阅读 · 2020年10月24日
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
【ICML2020】图神经网络基准,53页ppt,NUS-Xavier Bresson
专知会员服务
57+阅读 · 2020年7月18日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
已删除
将门创投
12+阅读 · 2018年6月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员