Stochastic gradient Langevin dynamics (SGLD) and stochastic gradient Hamiltonian Monte Carlo (SGHMC) are two popular Markov Chain Monte Carlo (MCMC) algorithms for Bayesian inference that can scale to large datasets, allowing to sample from the posterior distribution of the parameters of a statistical model given the input data and the prior distribution over the model parameters. However, these algorithms do not apply to the decentralized learning setting, when a network of agents are working collaboratively to learn the parameters of a statistical model without sharing their individual data due to privacy reasons or communication constraints. We study two algorithms: Decentralized SGLD (DE-SGLD) and Decentralized SGHMC (DE-SGHMC) which are adaptations of SGLD and SGHMC methods that allow scaleable Bayesian inference in the decentralized setting for large datasets. We show that when the posterior distribution is strongly log-concave and smooth, the iterates of these algorithms converge linearly to a neighborhood of the target distribution in the 2-Wasserstein distance if their parameters are selected appropriately. We illustrate the efficiency of our algorithms on decentralized Bayesian linear regression and Bayesian logistic regression problems.


翻译:这些算法不适用于分散化的学习环境,因为一个代理人网络由于隐私原因或通信限制,正在合作学习统计模型的参数,而不分享其个人数据。我们研究两种算法:分散式的SGLD(DE-SGLD)和分散式的SGHMC(DE-SGHMC),这是对SGLD和SGHMC方法的调整,这些算法允许在分散化的环境下对大数据集进行比例化的Bayesian推论。我们表明,当一个代理人网络由于隐私原因或通信限制,正在协力合作,学习统计模型的参数,而不分享其个人数据。我们研究两种算法:分散式的SGLD(DE-SGLD)和分散式的SGHMC(DE-SGHMC),它们是对SGLD和SGHMC方法的调整,这些方法允许在分散化环境中对大数据集进行比例化的推论。我们指出,如果选择了分化式回归率,那么这些算法将线性地集中到2瓦瑟斯坦距离的目标分布区段的附近。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
52+阅读 · 2020年9月7日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
52+阅读 · 2020年9月7日
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
相关资讯
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
蒙特卡罗方法(Monte Carlo Methods)
数据挖掘入门与实战
6+阅读 · 2018年4月22日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员