We provide an inference procedure for the sharp regression discontinuity design (RDD) under monotonicity, with possibly multiple running variables. Specifically, we consider the case where the true regression function is monotone with respect to (all or some of) the running variables and assumed to lie in a Lipschitz smoothness class. Such a monotonicity condition is natural in many empirical contexts, and the Lipschitz constant has an intuitive interpretation. We propose a minimax two-sided confidence interval (CI) and an adaptive one-sided CI. For the two-sided CI, the researcher is required to choose a Lipschitz constant where she believes the true regression function to lie in. This is the only tuning parameter, and the resulting CI has uniform coverage and obtains the minimax optimal length. The one-sided CI can be constructed to maintain coverage over all monotone functions, providing maximum credibility in terms of the choice of the Lipschitz constant. Moreover, the monotonicity makes it possible for the (excess) length of the CI to adapt to the true Lipschitz constant of the unknown regression function. Overall, the proposed procedures make it easy to see under what conditions on the underlying regression function the given estimates are significant, which can add more transparency to research using RDD methods.
翻译:我们为在单调状态下急剧回归不连续设计(RDD)提供了一种推论程序, 可能有多个运行变量。 具体地说, 我们考虑的是真实回归函数对于运行中的变量( 全部或部分) 是单调的, 并假定位于利普施茨平滑等级。 这种单调状态在许多经验环境中是自然的, 而利普施茨常量有一个直觉解释。 我们提议了一个小型双向信任间隔( CI) 和一个适应性的单向CI。 对于双向CI, 研究人员需要选择一个利普施茨常数, 她相信真正的回归函数就位于其中。 这是唯一的调制参数, 由此产生的CI具有统一的覆盖度, 并获得了最优的最小的长度 。 单向型CI 可以构建一个单一状态以维持所有单调函数的覆盖范围, 从而在选择利普西茨常数时提供最大的可信度。 此外, 单调使CI 能够( 过度) 能够适应真实的利普西茨常数 。 。 这是唯一的调整参数,, 并且 以 比较容易的 RDDD 的方法 。