We present a new adaptive parallel algorithm for the challenging problem of multi-dimensional numerical integration on massively parallel architectures. Adaptive algorithms have demonstrated the best performance, but efficient many-core utilization is difficult to achieve because the adaptive work-load can vary greatly across the integration space and is impossible to predict a priori. Existing parallel algorithms utilize sequential computations on independent processors, which results in bottlenecks due to the need for data redistribution and processor synchronization. Our algorithm employs a high-throughput approach in which all existing sub-regions are processed and sub-divided in parallel. Repeated sub-region classification and filtering improves upon a brute-force approach and allows the algorithm to make efficient use of computation and memory resources. A CUDA implementation shows orders of magnitude speedup over the fastest open-source CPU method and extends the achievable accuracy for difficult integrands. Our algorithm typically outperforms other existing deterministic parallel methods.


翻译:我们为大规模平行建筑的多维数字整合这一具有挑战性的问题提出了一种新的适应性平行算法。适应性算法展示了最佳的性能,但高效的多核心利用却难以实现,因为适应性工作负荷在整个整合空间中差异很大,无法预先预测。现有的平行算法在独立处理器上采用连续计算,这导致由于数据再分配和处理器同步的需要而出现瓶颈。我们的算法采用高通量法,所有现有的子区域都同时处理和分解。重复性的次区域分类和过滤法改进了粗力方法,使算法能够有效地使用计算和记忆资源。CUDA的实施显示快速的开放源代码处理法的加速度,并扩大了困难的元件的可实现的准确性。我们的算法通常优于其他现有的确定性平行方法。

0
下载
关闭预览

相关内容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI杂志。 Publisher:Elsevier。 SIT:http://dblp.uni-trier.de/db/journals/integration/
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Python编程基础,121页ppt
专知会员服务
48+阅读 · 2021年1月1日
专知会员服务
52+阅读 · 2020年9月7日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
专知会员服务
109+阅读 · 2020年3月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2020年6月12日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Proper Scoring Rules for Missing Value Imputation
Arxiv
0+阅读 · 2021年6月7日
Arxiv
0+阅读 · 2021年6月5日
Arxiv
0+阅读 · 2021年6月4日
Arxiv
7+阅读 · 2018年1月30日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Python编程基础,121页ppt
专知会员服务
48+阅读 · 2021年1月1日
专知会员服务
52+阅读 · 2020年9月7日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
专知会员服务
109+阅读 · 2020年3月12日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
已删除
将门创投
4+阅读 · 2020年6月12日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
2018机器学习开源资源盘点
专知
6+阅读 · 2019年2月2日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Top
微信扫码咨询专知VIP会员