This article describes a method for creating applications for cluster computing systems using the parallel BSF skeleton based on the original BSF (Bulk Synchronous Farm) model of parallel computations developed by the author earlier. This model uses the master/slave paradigm. The main advantage of the BSF model is that it allows to estimate the scalability of a parallel algorithm before its implementation. Another important feature of the BSF model is the representation of problem data in the form of lists that greatly simplifies the logic of building applications. The BSF skeleton is designed for creating parallel programs in C++ using the MPI library. The scope of the BSF skeleton is iterative numerical algorithms of high computational complexity. The BSF skeleton has the following distinctive features. - The BSF-skeleton completely encapsulates all aspects that are associated with parallelizing a program. - The BSF skeleton allows error-free compilation at all stages of application development. - The BSF skeleton supports OpenMP programming model and workflows.


翻译:本文介绍了一种方法,用于创建集束计算系统的应用程序,使用基于作者先前开发的平行计算原始 BSF (Bulk Synchronous Farm) 模型的平行 BSF 骨架。 该模型使用主/奴隶范式。 BSF 模型的主要优点是,它能够在实施前估计平行算法的可扩展性。 BSF 模型的另一个重要特征是,以大大简化建筑应用程序逻辑的清单形式表示问题数据。 BSF 骨架的设计目的是利用MPI 库在 C++ 中创建平行程序。 BSF 骨架的范围是计算复杂度高的迭接数字算法。 BSF 骨架具有以下不同特征。 - BSF-skeleton 完全概括了与平行程序相关的所有方面。 - BSFT 骨架允许在应用开发的所有阶段无误编集数据。 - BSF 骨架支持 OpenMP 编程模型和工作流程。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
最新《高级算法》Advanced Algorithms,176页pdf
专知会员服务
90+阅读 · 2020年10月22日
专知会员服务
39+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
35+阅读 · 2019年11月7日
Arxiv
4+阅读 · 2019年4月17日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
最新《高级算法》Advanced Algorithms,176页pdf
专知会员服务
90+阅读 · 2020年10月22日
专知会员服务
39+阅读 · 2020年9月6日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员