A moment function is called doubly robust if it is comprised of two nuisance functions and the estimator based on it is a consistent estimator of the target parameter even if one of the nuisance functions is misspecified. In this paper, we consider a class of doubly robust moment functions originally introduced in (Robins et al., 2008). We demonstrate that this moment function can be used to construct estimating equations for the nuisance functions. The main idea is to choose each nuisance function such that it minimizes the dependency of the expected value of the moment function to the other nuisance function. We implement this idea as a minimax optimization problem. We then provide conditions required for asymptotic linearity of the estimator of the parameter of interest, which are based on the convergence rate of the product of the errors of the nuisance functions, as well as the local ill-posedness of a conditional expectation operator. The convergence rates of the nuisance functions are analyzed using the modern techniques in statistical learning theory based on the Rademacher complexity of the function spaces. We specifically focus on the case that the function spaces are reproducing kernel Hilbert spaces, which enables us to use its spectral properties to analyze the convergence rates. As an application of the proposed methodology, we consider the parameter of average causal effect both in presence and absence of latent confounders. For the case of presence of latent confounders, we use the recently proposed proximal causal inference framework of (Miao et al., 2018; Tchetgen Tchetgen et al., 2020), and hence our results lead to a robust non-parametric estimator for average causal effect in this framework.
翻译:由两个骚扰函数构成的瞬间函数被称为“ 加倍” 。 如果由两个骚扰函数组成, 而基于此函数的估算值是目标参数的一致估计值, 即便其中的一个破坏函数被错误描述为错误。 在本文中, 我们考虑的是一组最初引入的双重强度瞬间函数( Robins 等人, 2008) 。 我们显示, 此瞬间函数可以用来为调理函数构建估算方程式。 主要的想法是选择每个调理函数, 以便尽可能减少当值函数的预期值对其它调理函数的依赖性 。 我们将此概念作为最小调理值优化问题来实施。 然后我们提供一系列条件, 使利益参数的估算值的不稳性线性线性线性线性( Robins 等人, 2008) 。 我们显示, 这个瞬间调理值框架的本地错乱。 调和调和调和调和调理框架的调和率的调和率, 我们用现代的统计学习理论来分析当前调和调和调和调和调和度的变整空间的变整结果。 我们具体地, 正在分析其判判的判判法, 。