Legacy device drivers implement both device resource management and isolation. This results in a large code base with a wide high-level interface making the driver vulnerable to security attacks. This is particularly problematic for increasingly popular accelerators like GPUs that have large, complex drivers. We solve this problem with library drivers, a new driver architecture. A library driver implements resource management as an untrusted library in the application process address space, and implements isolation as a kernel module that is smaller and has a narrower lower-level interface (i.e., closer to hardware) than a legacy driver. We articulate a set of device and platform hardware properties that are required to retrofit a legacy driver into a library driver. To demonstrate the feasibility and superiority of library drivers, we present Glider, a library driver implementation for two GPUs of popular brands, Radeon and Intel. Glider reduces the TCB size and attack surface by about 35% and 84% respectively for a Radeon HD 6450 GPU and by about 38% and 90% respectively for an Intel Ivy Bridge GPU. Moreover, it incurs no performance cost. Indeed, Glider outperforms a legacy driver for applications requiring intensive interactions with the device driver, such as applications using the OpenGL immediate mode API.


翻译:遗留设备驱动器既实施设备资源管理, 也实施隔离 。 这导致一个大型代码基点, 其界面高度广泛, 使驱动器易受安全攻击。 这对像GPU这样的越来越受欢迎的加速器来说尤其成问题。 我们用图书馆驱动器解决了这个问题, 新的驱动器结构。 图书馆驱动器在应用过程中的地址空间中将资源管理作为不受信任的图书馆实施, 将孤立作为内核模块实施, 该模块较小, 并且比遗留驱动器更窄, 其界面( 即, 更接近硬件) 。 我们阐述了将遗留驱动器改装成图书馆驱动器所需的一套设备和平台硬件属性。 为了展示图书馆驱动器的可行性和优越性, 我们介绍Glider, 图书馆驱动器对两个流行品牌GPU( Radeon 和 Intel ) 的应用程序实施这一问题。 Glider 将Radeon HD 6450 GPUPU 的TC 尺寸和攻击表面分别减少35% 和84%, 以及 Intel Ivy Bridge GPUP 的界面分别减少38%和90%。 此外, 而且, 它不需要需要将驱动器快速应用软件与直截路。 事实上要求。 。

0
下载
关闭预览

相关内容

Radeon(中文名称称为镭™)是一个英文产品的商标。Radeon是AMD公司出品的显示芯片的一种系列。俗称A卡。 全称一般写作:AMD Radeon HD xxxx ,例如台式机显卡型号:AMD Radeon HD 6450。HD7000系列以后,AMD启用新的AMD Radeon R9/R7 xxx命名旗下新的显示芯片。
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Arxiv
35+阅读 · 2019年11月7日
Feature Denoising for Improving Adversarial Robustness
Arxiv
15+阅读 · 2018年12月9日
Arxiv
8+阅读 · 2018年11月27日
Arxiv
5+阅读 · 2018年10月4日
Arxiv
3+阅读 · 2018年3月13日
VIP会员
相关VIP内容
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】Kaggle机器学习数据集推荐
机器学习研究会
8+阅读 · 2017年11月19日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Top
微信扫码咨询专知VIP会员