We propose Unified Model of Saliency and Scanpaths (UMSS) -- a model that learns to predict visual saliency and scanpaths (i.e. sequences of eye fixations) on information visualisations. Although scanpaths provide rich information about the importance of different visualisation elements during the visual exploration process, prior work has been limited to predicting aggregated attention statistics, such as visual saliency. We present in-depth analyses of gaze behaviour for different information visualisation elements (e.g. Title, Label, Data) on the popular MASSVIS dataset. We show that while, overall, gaze patterns are surprisingly consistent across visualisations and viewers, there are also structural differences in gaze dynamics for different elements. Informed by our analyses, UMSS first predicts multi-duration element-level saliency maps, then probabilistically samples scanpaths from them. Extensive experiments on MASSVIS show that our method consistently outperforms state-of-the-art methods with respect to several, widely used scanpath and saliency evaluation metrics. Our method achieves a relative improvement in sequence score of 11.5% for scanpath prediction, and a relative improvement in Pearson correlation coefficient of up to 23.6% for saliency prediction. These results are auspicious and point towards richer user models and simulations of visual attention on visualisations without the need for any eye tracking equipment.
翻译:我们提议了团结和扫描虫的统一模型(UMSS) -- -- 这是一种模型,可以用来预测信息视觉学的视觉显著性和扫描虫(即眼睛固定的序列)的模型(UMSS) -- -- 尽管扫描虫提供了丰富的信息,说明在视觉探索过程中不同视觉元素的重要性,但先前的工作仅限于预测视觉显著性等综合关注统计数据。我们对流行的MASSVIS数据集的不同信息视觉元素(如标题、标签、数据)的凝视行为进行深入分析。我们表明,总体来看,视觉模式在视觉学和视觉观察者之间非常一致,但不同元素的视觉动态也存在结构性差异。通过我们的分析,UMSS首先预测了多度元素显著性地图,然后是概率性样本。关于MASSVIS的广泛实验表明,我们的方法在多种广泛使用的扫描和突出评价指标方面,始终优于关注状态方法。我们的方法在视觉学动态的动态动态动态方面,在视觉精确性预测的排序中取得了相对的改善点。