An absent factor of a string $w$ is a string $u$ which does not occur as a contiguous substring (a.k.a. factor) inside $w$. We extend this well-studied notion and define absent subsequences: a string $u$ is an absent subsequence of a string $w$ if $u$ does not occur as subsequence (a.k.a. scattered factor) inside $w$. Of particular interest to us are minimal absent subsequences, i.e., absent subsequences whose every subsequence is not absent, and shortest absent subsequences, i.e., absent subsequences of minimal length. We show a series of combinatorial and algorithmic results regarding these two notions. For instance: we give combinatorial characterisations of the sets of minimal and, respectively, shortest absent subsequences in a word, as well as compact representations of these sets; we show how we can test efficiently if a string is a shortest or minimal absent subsequence in a word, and we give efficient algorithms computing the lexicographically smallest absent subsequence of each kind; also, we show how a data structure for answering shortest absent subsequence-queries for the factors of a given string can be efficiently computed.
翻译:字符串 $w$ 的缺省因素是 字符串 $u 元 的缺省因素 。 字符串 美元 的缺省因素 是 美元 美元 内 美元 内 字符串 美元 的 字符串 美元 的 美元, 美元 美元 内 的 字符串 美元 的 字符串 美元 美元 的 字符串 美元 美元 的 字符串 美元 美元 的 字符串 美元 的 字符串 美元, 美元 美元 美元 美元 美元 内 美元 的 字符串 的 美元 美元, 美元 美元 美元 内 美元 内 的 字符串, 美元 内 内 内 内 的 数 数 数 内 数 数 的 数 数 数 数 数 数 。 我们特别感兴趣的是 少 的 的 后 后, 后,, 即 少 少 后 后 后 数 数,, 少, 少 数 的 。 我们如何 测试 的 短 。