This paper analyzes the correlation matrix between the a priori error and measurement noise vectors for affine projection algorithms (APA). This correlation stems from the dependence between the filter tap estimates and the noise samples, and has a strong influence on the mean square behavior of the algorithm. We show that the correlation matrix is upper triangular, and compute the diagonal elements in closed form, showing that they are independent of the input process statistics. Also, for white inputs we show that the matrix is fully diagonal. These results are valid in the transient and steady states of the algorithm considering a possibly variable step-size. Our only assumption is that the filter order is large compared to the projection order of APA and we make no assumptions on the input signal except for stationarity. Using these results, we perform a steady-state analysis of the algorithm for small step size and provide a new simple closed-form expression for mean-square error, which has comparable or better accuracy to many preexisting expressions, and is much simpler to compute. Finally, we also obtain expressions for the steady-state energy of the other components of the error vector.
翻译:本文分析了先验错误和测算噪声矢量之间的关联矩阵, 以得出折叠投影算法( APA) 。 这种关联来自过滤自控估计和噪声样本之间的依赖性, 对算法的平均平方行为具有强烈的影响 。 我们显示, 相关矩阵是上三角形, 并以封闭形式计算对角元素, 表明它们独立于输入过程统计 。 另外, 对于白色输入, 我们显示矩阵是完全对立的 。 这些结果在算法的瞬时态和稳定状态中是有效的, 考虑着一个可能的可变步数大小 。 我们唯一的假设是, 过滤顺序与 APA 的预测顺序相比是很大的, 我们除了静态性外, 对输入信号没有做出任何假设 。 我们使用这些结果, 对小步数的算法进行稳定状态分析, 并为平均方差提供一种新的简单封闭式表达式表达式, 与许多预存在的表达式具有可比性或更精确性, 并且比较简单。 最后, 我们还获得错误矢量矢量其他部件的稳态能量的表达式。