We are interested in learning generative models for complex geometries described via manifolds, such as spheres, tori, and other implicit surfaces. Current extensions of existing (Euclidean) generative models are restricted to specific geometries and typically suffer from high computational costs. We introduce Moser Flow (MF), a new class of generative models within the family of continuous normalizing flows (CNF). MF also produces a CNF via a solution to the change-of-variable formula, however differently from other CNF methods, its model (learned) density is parameterized as the source (prior) density minus the divergence of a neural network (NN). The divergence is a local, linear differential operator, easy to approximate and calculate on manifolds. Therefore, unlike other CNFs, MF does not require invoking or backpropagating through an ODE solver during training. Furthermore, representing the model density explicitly as the divergence of a NN rather than as a solution of an ODE facilitates learning high fidelity densities. Theoretically, we prove that MF constitutes a universal density approximator under suitable assumptions. Empirically, we demonstrate for the first time the use of flow models for sampling from general curved surfaces and achieve significant improvements in density estimation, sample quality, and training complexity over existing CNFs on challenging synthetic geometries and real-world benchmarks from the earth and climate sciences.


翻译:我们感兴趣的是,通过诸如球体、托里和其他隐含表面等多种方式描述的复杂地貌的基因模型。目前,现有(欧洲)基因模型的扩展仅限于特定的地貌特征,而且通常会受到高计算成本的影响。我们引入了Moser Flor(MF),这是连续正常流动(CNF)体系中的一种新型的基因模型。MF还产生一个CNF(CNF),通过解决易变公式的解决方案解决易变公式问题,而与其他CNF方法不同,其模型(Agest)密度作为源(原始)密度减去神经网络(NNN)差异的参数。这种差异是一个本地的、线性差异操作者,很容易估算和计算各种元数据。因此,与其他CNFS(MF)不同的是,MF在培训过程中不需要通过一个ODE解析器来援引或反向反向调整。此外,模型的密度明确代表了NEFO的偏差,而不是ODE的解决方案,有助于学习高忠诚度密度的密度基准。理论上,我们证明MF是,M(MFMFF)首次构成一种普遍密度真实的、真实的基质变压模型,在适当的地面假设下,在地面模型中可以实现重大时间模型和曲线上的改良。

0
下载
关闭预览

相关内容

在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),也可以用来建立变量间的条件概率分布。条件概率分布可以由生成模型根据贝叶斯定理形成。
最新《图理论》笔记书,98页pdf
专知会员服务
75+阅读 · 2020年12月27日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
“CVPR 2020 接受论文列表 1470篇论文都在这了
已删除
将门创投
4+阅读 · 2019年9月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
8+阅读 · 2018年5月21日
Arxiv
4+阅读 · 2018年4月26日
Arxiv
7+阅读 · 2018年3月21日
VIP会员
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
已删除
将门创投
4+阅读 · 2019年9月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员