Sparse Group LASSO (SGL) is a regularized model for high-dimensional linear regression problems with grouped covariates. SGL applies $l_1$ and $l_2$ penalties on the individual predictors and group predictors, respectively, to guarantee sparse effects both on the inter-group and within-group levels. In this paper, we apply the approximate message passing (AMP) algorithm to efficiently solve the SGL problem under Gaussian random designs. We further use the recently developed state evolution analysis of AMP to derive an asymptotically exact characterization of SGL solution. This allows us to conduct multiple fine-grained statistical analyses of SGL, through which we investigate the effects of the group information and $\gamma$ (proportion of $\ell_1$ penalty). With the lens of various performance measures, we show that SGL with small $\gamma$ benefits significantly from the group information and can outperform other SGL (including LASSO) or regularized models which does not exploit the group information, in terms of the recovery rate of signal, false discovery rate and mean squared error.
翻译:LASSO(SGL)是一个常规化的模型,用于处理与组合式共变体有关的高维线性回归问题。SGL对单个预测器和组内预测器分别适用1美元和2美元罚款,以保障对群体间和组内水平的微弱影响。在本文中,我们使用大致信息传递(AMP)算法,以便在高斯随机设计下有效解决SGL问题。我们进一步使用最近开发的AMP国家进化分析,以得出对SGL解决方案的简单准确定性。这使我们能够对SGL进行多次细微的统计分析,通过这种分析,我们调查小组信息的效果和$\gamma$(1美元罚款的比重)。从各种性能措施的角度来看,我们显示小的美元SGL从小组信息中大得益,并且可以超越其他SGL(包括LASSO)或常规化模型,这些模型没有从信号、虚假发现率和平均平方误差的回收率中利用小组信息。