We present a pipeline for geomorphological analysis that uses structure from motion (SfM) and deep learning on close-range aerial imagery to estimate spatial distributions of rock traits (size, roundness, and orientation) along a tectonic fault scarp. The properties of the rocks on the fault scarp derive from the combination of initial volcanic fracturing and subsequent tectonic and geomorphic fracturing, and our pipeline allows scientists to leverage UAS-based imagery to gain a better understanding of such surface processes. We start by using SfM on aerial imagery to produce georeferenced orthomosaics and digital elevation models (DEM). A human expert then annotates rocks on a set of image tiles sampled from the orthomosaics, and these annotations are used to train a deep neural network to detect and segment individual rocks in the entire site. The extracted semantic information (rock masks) on large volumes of unlabeled, high-resolution SfM products allows subsequent structural analysis and shape descriptors to estimate rock size, roundness, and orientation. We present results of two experiments conducted along a fault scarp in the Volcanic Tablelands near Bishop, California. We conducted the first, proof-of-concept experiment with a DJI Phantom 4 Pro equipped with an RGB camera and inspected if elevation information assisted instance segmentation from RGB channels. Rock-trait histograms along and across the fault scarp were obtained with the neural network inference. In the second experiment, we deployed a hexrotor and a multispectral camera to produce a DEM and five spectral orthomosaics in red, green, blue, red edge, and near infrared. We focused on examining the effectiveness of different combinations of input channels in instance segmentation.


翻译:我们提出了一个地貌分析管道,该管道利用运动(SfM)和近距离航空图像深度学习的结构,来估计构造断层断裂处的岩石特征(大小、圆度和方向)的空间分布。断层断裂处岩石的特性来自最初火山碎裂及随后构造和地貌断裂的组合。我们的管道使科学家能够利用基于UAS的图像更好地了解这些表面过程。我们首先利用空中图像的SfM来生成地理参照的正方形图像和数字升程模型(DEM)。一位人类专家然后对一组从断层断层断层取样的图像砖块进行笔记。断层的岩石特性来自最初的火山碎裂和随后的构造断层和深层图像。我们提取的关于大量无标记的、高分辨率的SfM产品(岩石口罩)的语系信息,随后进行结构分析,并绘制了对岩石大小、圆形和数字高度高度的模型模型(DD)。我们展示了两处的直径直径直径的直径直径直径直路路路路段的实验结果。我们先在直径直径直径直径4直径直径直径直径直径对地进行了。

0
下载
关闭预览

相关内容

最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Arxiv
0+阅读 · 2021年3月8日
Learning to See Through Obstructions
Arxiv
7+阅读 · 2020年4月2日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
Structure Aware SLAM using Quadrics and Planes
Arxiv
4+阅读 · 2018年8月13日
VIP会员
相关VIP内容
最新《生成式对抗网络》简介,25页ppt
专知会员服务
173+阅读 · 2020年6月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员