Invasive Brain-Computer Interfaces (BCI) are extensively used in medical application scenarios to record, stimulate, or inhibit neural activity with different purposes. An example is the stimulation of some brain areas to reduce the effects generated by Parkinson's disease. Despite the advances in recent years, cybersecurity on BCI is an open challenge since attackers can exploit the vulnerabilities of invasive BCIs to induce malicious stimulation or treatment disruption, affecting neuronal activity. In this work, we design and implement a novel neuronal cyberattack, called Neuronal Jamming (JAM), which prevents neurons from producing spikes. To implement and measure the JAM impact, and due to the lack of realistic neuronal topologies in mammalians, we have defined a use case with a Convolutional Neural Network (CNN) trained to allow a mouse to exit a particular maze. The resulting model has been translated to a neural topology, simulating a portion of a mouse's visual cortex. The impact of JAM on both biological and artificial networks is measured, analyzing how the attacks can both disrupt the spontaneous neural signaling and the mouse's capacity to exit the maze. Besides, we compare the impacts of both JAM and FLO (an existing neural cyberattack) demonstrating that JAM generates a higher impact in terms of neuronal spike rate. Finally, we discuss on whether and how JAM and FLO attacks could induce the effects of neurodegenerative diseases if the implanted BCI had a comprehensive electrode coverage of the targeted brain regions.


翻译:在医疗应用情景中,广泛使用侵入性大脑-计算机界面(BCI)来记录、刺激或抑制具有不同目的的神经活动。一个例子是刺激某些大脑地区以减少帕金森病的影响。尽管近年来取得了进步,但BCI网络安全是一个公开的挑战,因为攻击者可以利用入侵性大脑-计算机界面的弱点诱发恶意刺激或治疗干扰,影响神经活动。在这项工作中,我们设计和实施一种新型神经网络攻击,称为神经神经加速器(Neurronal Jamming ),它防止神经系统产生螺旋。为了实施和测量JAM的影响,并且由于哺乳动物缺乏现实的神经表层病学学,我们用革命性神经网络(CNN)界定了一个使用案例,目的是让鼠标退出某个特定的磁场。因此模型被转化成一个神经表,模拟鼠标的视觉皮质反应的一部分。测量了JAM对生物和人工网络的影响,分析这些攻击如何能够破坏自发性神经内脏信号范围,并且由于哺乳性神经内脏的内脏影响,我们最终会分析JMA的直射速度影响。

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
0+阅读 · 2021年7月13日
Arxiv
0+阅读 · 2021年7月13日
VIP会员
相关VIP内容
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员