In the vehicular mixed reality (MR) Metaverse, the distance between physical and virtual entities can be overcome by fusing the physical and virtual environments with multi-dimensional communications in autonomous driving systems. Assisted by digital twin (DT) technologies, connected autonomous vehicles (AVs), roadside units (RSU), and virtual simulators can maintain the vehicular MR Metaverse via digital simulations for sharing data and making driving decisions collaboratively. However, large-scale traffic and driving simulation via realistic data collection and fusion from the physical world for online prediction and offline training in autonomous driving systems are difficult and costly. In this paper, we propose an autonomous driving architecture, where generative AI is leveraged to synthesize unlimited conditioned traffic and driving data in simulations for improving driving safety and traffic efficiency. First, we propose a multi-task DT offloading model for the reliable execution of heterogeneous DT tasks with different requirements at RSUs. Then, based on the preferences of AV's DTs and collected realistic data, virtual simulators can synthesize unlimited conditioned driving and traffic datasets to further improve robustness. Finally, we propose a multi-task enhanced auction-based mechanism to provide fine-grained incentives for RSUs in providing resources for autonomous driving. The property analysis and experimental results demonstrate that the proposed mechanism and architecture are strategy-proof and effective, respectively.


翻译:在复杂混杂的现实(MR)模型中,实体和虚拟实体之间的距离可以通过在自主驾驶系统中以多维通信方式将物理和虚拟环境与多维通信连接起来来克服。在数字双型(DT)技术、连接的自动车辆(AVs)、路边单位(RSU)和虚拟模拟器的帮助下,通过数字模拟来分享数据和共同作出驾驶决定,可以保持机动MM MM元变量。然而,通过现实的数据收集和从实体世界收集真实数据以进行在线预测和自动驾驶系统离线培训而进行大规模交通和驾驶模拟是困难和代价高昂的。在本文件中,我们提议建立一个自主驾驶结构,利用基因化的AI来综合无限制有条件的交通和驾驶数据,进行模拟,以提高驾驶安全和交通效率。首先,我们提出一个多功能的DT卸载模型,用于可靠地执行具有不同要求的混合的DT任务。然后,根据AV的DT和收集的切实现实数据,虚拟模拟器可以合成无限制的驾驶和交通微调数据,以进一步提高稳健性。最后,我们提议一个多功能的实验性分析,以便分别提供自动拍卖的多功能。我们提出的多功能分析。

0
下载
关闭预览

相关内容

磁流变(Magnetorheological,简称MR)材料是一种流变性能可由磁场控制的新型智能材料。由于其响应快(ms量级)、可逆性好(撤去磁场后,又恢复初始状态)、以及通过调节磁场大小来控制材料的力学性能连续变化,因而近年来在汽车、建筑、振动控制等领域得到广泛应用。
【元宇宙】“The State Of The Metaverse”26页报告
专知会员服务
43+阅读 · 2022年5月25日
Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
全球首个GNN为主的AI创业公司,募资$18.5 million!
图与推荐
1+阅读 · 2022年4月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员