Targeted high-resolution simulations driven by a general circulation model (GCM) can be used to calibrate GCM parameterizations of processes that are globally unresolvable but can be resolved in limited-area simulations. This raises the question of where to place high-resolution simulations to be maximally informative about the uncertain parameterizations in the global model. Here we construct an ensemble-based parallel algorithm to locate regions that maximize the uncertainty reduction, or information gain, in the uncertainty quantification of GCM parameters with regional data. The algorithm is based on a Bayesian framework that exploits a quantified posterior distribution on GCM parameters as a measure of uncertainty. The algorithm is embedded in the recently developed calibrate-emulate-sample (CES) framework, which performs efficient model calibration and uncertainty quantification with only O(10^2) forward model evaluations, compared with O(10^5) forward model evaluations typically needed for traditional approaches to Bayesian calibration. We demonstrate the algorithm with an idealized GCM, with which we generate surrogates of high-resolution data. In this setting, we calibrate parameters and quantify uncertainties in a quasi-equilibrium convection scheme. We consider (i) localization in space for a statistically stationary problem, and (ii) localization in space and time for a seasonally varying problem. In these proof-of-concept applications, the calculated information gain reflects the reduction in parametric uncertainty obtained from Bayesian inference when harnessing a targeted sample of data. The largest information gain results from regions near the intertropical convergence zone (ITCZ) and indeed the algorithm automatically targets these regions for data collection.
翻译:由一般环流模型(GCM)驱动的定向高分辨率模拟可用于校准全球无法解析但可在有限区域模拟中解决的流程的GCM参数。这提出了高分辨率模拟在何处放置的问题,以便对全球模型的不确定参数进行最大程度的信息化。我们在这里构建了一个基于全方位的平行算法,以定位那些在利用区域数据对GCM参数进行不确定性量化时通常需要最大限度地减少不确定性或获得信息的地区的定位。算法基于一个巴伊西亚框架,该框架利用GCM参数的量化后表层分布作为目标不确定性的衡量尺度。算法嵌入最近开发的校准-模版(CES)框架,该框架对全球模型的不确定性进行高效的校准和量化,仅使用O(10)2)前期模型评估。我们在这里构建了一个基于巴伊西亚校准传统方法通常需要的远端模型评估。我们用一种理想化的GCM来演示算法,我们利用这个框架生成高分辨率数据的最大代位。在这个设置中,我们从准近端的轨迹参数中校准参数,并在准空间区域中计算出一种精确的精确度数据,从空间定位中,我们从空间定位中计算出一个对准系统进行计算,在空间定位中,在空间定位中,在空间定位中,在空间定位中,在空间定位中将这些数据的计算,在空间定位中将数据采集中,在计算出一种对准中,在计算出一个地方数据采集点中,在计算出一个精确度上,在空间定位中,在计算出一个精确度数据采集中,在计算出一个精确度上,在精确度数据中,在空间点中,在计算中,在计算,在空间点中,在空间点中,在计算,在计算出,在计算,在计算,在计算中,在计算,在计算中,在计算中,在空间站点上,在计算,在计算中,在计算中,在计算中,在计算中,在计算中,在计算中,在计算中,在计算,在计算中,在计算中,在计算中,在计算中,在计算中,在计算中,在计算中,在计算中,在计算中,在计算中,在计算中,在计算中,在计算,在计算,在计算,在计算,在空间